DOI QR코드

DOI QR Code

영가철/바이오 복합처리제를 이용한 질산성 질소 오염 지하수의 현장 지중정화 적용성 평가

Field Assessment of in Situ Remediation of NO3--contaminated Ground Water Using Zero-valent Iron/Bio Composite Media

  • Joo, Wan-Ho (Department of Environmental Engineering, Kwangwoon University) ;
  • Chang, Yoon-Young (Department of Environmental Engineering, Kwangwoon University)
  • 투고 : 2021.01.19
  • 심사 : 2021.01.26
  • 발행 : 2021.02.28

초록

본 연구에서는 예산군에 위치한 질산성 질소 오염 지하수 부지를 대상으로 오염지하수의 지중정화현장 적용성 평가를 수행하고자, 영가철/바이오 환경정화소재를 이용한 Injected PRB(Permeable Reactive Barrier)와 관측정을 현장 오염지하수부지에 적용하고 주요 정화지표에 대한 변화를 모니터링하였다. 질산성질소, 아질산성질소, 암모니아성질소, 철 이온, TOC, 탁도 등의 항목 등을 조사하고 미생물 분석을 실시하여 지중정화기술의 현장 적용성을 평가하였다. 연구대상 부지는 농경지역으로 북쪽 경계는 하천이 서쪽에서 동쪽으로 흐르며 하천 경계를 형성하고 남쪽은 불투수 경계로 이루어져 있다. 질산성질소는 전반적으로 지하수 흐름과 유사하게 하천으로 흐르는 것으로 분석되었다. 모델링 결과, 약 3년에서 5년정도 경과 후 안정 상태로 도달하는 것으로 판단되었다. 이는 추가적인 오염원 유입이 없는 현재 상태만 고려한 것으로 지속적 오염이 유입된다면 오염범위 및 안정화 기간이 증가할 수 있다. 모니터링 결과, PRB설치 전, 후 철 이온, TOC, 탁도 값이 큰 차이를 보이지 않아 PRB의 음용수 관정 영향은 없는 것으로 판단되어 해당 지중정화기술의 지중 주입 적합성을 확인하였다. 질산성질소는 PRB 설치 42일 차까지 5 mg/L보다 낮은 농도가 유지되었으나 84일 차부터 PRB 내부의 질산성질소 제거 유효 기간이 끝나 원래의 농도를 회복하였다. PRB 설치 후 아질산성 질소와 암모니아성 질소의 검출은 PRB에 의한 질산성 질소의 환원에 의한 감소를 보여주었으며, 미생물 분석 결과 종 다양성이 증가하고 탈질 미생물을 포함하고 있는 Betaproteobacteria Class 군집이 크게 증가한 결과는 질산성 질소가 생물학적 환원작용에 의한 정화 가능성도 보여주었다.

In this study, the assessment of field applicability of in-situ remediation of nitrate-contaminated groundwater located in Yesan-gun was performed. Zero-valent iron/bio composite media injected PRB (Permeable Reactive Barrier) and monitoring well were installed in the contaminated groundwater site and monitored main remediation indicators during the PRB operation. Nitrate, nitrite, ammonia, Fe ion, TOC, and turbidity were analyzed and the diversity and population of microorganism in the PRB installed site were investigated for the verification of effect of injected PRB. In the study site where is an agricultural area, a river flows from west to east that forms a river boundary and the southern area has an impermeable sector. It was found that nitrate flows into the river, which is similar as groundwater flow. Simulation result for the fate of nitrate in groundwater showed steady state of nitrate arrived after 3~5 years passed. However, it is just to consider current conditions with no additional input of contaminant source, if additional input of contaminant source occurs contamination dispersion and time for steady state are expected to be increased. The monitoring results showed that Fe ion, TOC and turbidity in groundwater were not clearly changed in concentration after PRB installation, which indicates adaptability of the injected PRB for remediation of groundwater with no additional harmful effect to water quality. The concentration of nitrate maintained less than 5mg/L until 42 days after PRB installation and recovered its initial concentration after 84 days passed and showed termination of reactivity of injected zero-valent iron/bio composite media for removal nitrate. Nitrite and ammonia ions found after installation of PRB indicates reductive removal of nitrate. And the outstanding increase of microorganism diversity and population of Betaproteobacteria Class which includes denitrification microorganism explains biologically reductive removal of nitrate in injected PRB.

키워드

참고문헌

  1. Blowes DW. 2000. Treatment of inorganic contaminants using permeable reactive barriers. Journal of Contaminant Hydrology. 45(1-2): 123-137. https://doi.org/10.1016/S0169-7722(00)00122-4
  2. Ralph D, Rick G. 2002. A permeable reactive barrier for treatment of heavy metals. Ground Water. 40(1): 59-66 https://doi.org/10.1111/j.1745-6584.2002.tb02491.x
  3. Dutta L. 2009. In situ biofilm barriers: Case study of a nitrate groundwater plume, Albuquerque, New Mexico, Remediation: The journal of environmental cleanup cost, technologies and techniques. 3(4): 101-111
  4. Gibert O. 2019. Performance of a field-scale biological permeable reactive barrier for insitu remediation of nitrate-contaminated groundwater. Science of The Total Environment. 659: 211-220 https://doi.org/10.1016/j.scitotenv.2018.12.340
  5. Head. 2018. Next Generation Sequencing (Methods and Protocols).
  6. Hong. 2018. Efficiency of nitrate reduction using nano-NZV particles packed column. J. KSWW. 32(3): 243-251. [Korean Literature]
  7. Kim. 2018. Serious contamination of groundwater in a piggery area located in Jeju. Jejuilbo. [Korean Literature]
  8. MOE. 2017. Operation result of monitoring well in Korea. [Korean Literature]
  9. MOE. 1997. Regulation of drinking water management. [Korean Literature]
  10. Oh. 2018. Removal of nitrate in ground water using silicon tubing packed polyurethane biowall. J. KSWST. 26(1): 35-46. [Korean Literature]
  11. Robertson C. 1995. In situ nitrification of septicsystem nitrate using reactive porous media barriers: field trials. Ground Water. 33(1): 99-111. https://doi.org/10.1111/j.1745-6584.1995.tb00266.x
  12. Rui L. 2019. A three chamber bioelectrochemical system appropriate for in-situ remediation of nitrate-contaminated groundwater and its reaction mechanisms. Water Research. 158(1): 401-410. https://doi.org/10.1016/j.watres.2019.04.047
  13. Schipper, V-V. 2000. Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust. Ecological Engineering. 14(3): 269-278. https://doi.org/10.1016/S0925-8574(99)00002-6
  14. Schipper V-V. 2001. Five years of nitrate removal, denitrification and carbon dynamics in a denitrification wall. Water Research. 35(14): 3473-3477. https://doi.org/10.1016/S0043-1354(01)00052-5
  15. WHO. 2016. Nitrate and nitrite in drinking-water: background document for development of WHO guidelines for drinking water quality.
  16. Yoo. 2010. Comparison of removal efficiency of nitrate by FeCl2 and ZnCl2 coated activated carbon. KOSET. 31: 70-75.