DOI QR코드

DOI QR Code

Evaluation on Medical Application of Survey meters in Convergence Perspective for the Efficient Disaster Responses in the Massive Radiological Disasters: A Simulation Study of Externally Contaminated Patients Using Two Representative type of Survey-Meters

융합적 관점에서 본 대량방사선 재난에서 효율적 재난반응을 위한 오염감시기의 의학적 적용에 대한 평가: 대표적 두가지 오염감시기를 이용한 방사선외부오염환자 시뮬레이션 연구

  • Kim, Chu Hyun (Department of Emergency Medicine, Inje University College of Medicine and Seoul Paik Hospital)
  • 김주현 (인제대학교 의과대학 서울백병원 응급의학과)
  • Received : 2021.02.15
  • Accepted : 2021.03.20
  • Published : 2021.03.28

Abstract

The purpose of the study is to evaluate the effect on medical application and convergence for the efficient disaster responses in the massive radiological events by comparison of two types of survey-meters(hand held survey-meter and transportable portal monitor). In the simulated radiation disaster drill, twelve participants randomly wore a personal protective equipments (PPE) with twelve check source. We measured participants to detect five real radioactive sources of the twelve check sources, using two types of survey meters. The primary outcome was the measuring time. The secondary outcome was the sensitivity and specificity of the detection of the real radioactive source. The average time by the hand held survey meter was 231.9 ± 116.6 seconds, and the time by transportable portal monitor was statistically shorter 8.690 ± 1.667 seconds. There was no difference in the sensitivity and specificity between two survey meters. The transportable portal monitor survey meter was considered to have medical application and play an important role in radiological disasters.

본 연구의 목적은 방사선 재난에서 효과적인 피폭 환자의 중등도 분류를 위하여 재난의학적 개념과 대표적인 방사선 계측기 (수 계측형 외부오염감시기와 이동형 문형 외부오염감시기) 측정기술의 융합을 통해 의학적 적용의 타당성을 구하는 것이다. 방사선 재난 상황을 위하여 모의환자를 설정하였고 모의 방사선 훈련에 참여한 12명이 12개의 모의선원이 부착된 방호복을 무작위로 입은 후의 두가지 외부오염감시기를 각각 이용하여 모의선원 중 5개의 실제 방사선 선원을 발견하는지 조사 후, 소요된 조사시간과 외부 오염환자 검출에 대한 민감도와 특이도를 구하였다. 1차 훈련에서 수 계측형 외부오염감시기로 걸린 평균 시간은 231.9 ± 116.6 초, 이동식 문형 외부오염감시기로 걸린 시간은 8.690 ± 1.667 초로 유의하게 측정한 시간이 짧았고 두 방법의 오염 검출의 민감도와 특이도는 100%로 차이가 없었다. 이동형 문형 외부오염감시기가 방사선 재난에서 의학적 적용의 타당성을 가지며 중요한 역할을 할 수 있을 것이다.

Keywords

References

  1. Korea Institute of Nuclear Safety. (2014). Radiation accident 2014.
  2. K. Coeytaux, E. Bey, D. Christensen, E. S. Glassman, B. Murdock &, C. Doucet. (2015). Reported radiation overexposure accidents worldwide, 1980-2013: a systematic review. PLoS One. 19;10(3), e0118709. DOI: 10.1371/journal.pone.0118709
  3. V. Meineke & H. Dorr. (2012). The Fukushima radiation accident: consequences for radiation accident medical management. Health Phys, 103(2), 217-20. DOI: 10.1097/HP.0b013e31825b5809
  4. Y. W. Jin, M. Jeong, K. Moon, M. H. Jo & S. K. Kang. (2010). Ionizing radiation-induced diseases in Korea. J Korean Med Sci. 25(Suppl), S70-6. DOI: 10.3346/jkms.2010.25.S.S70
  5. A. Jaworska. (2009). Types of radiation mass casualties and their management. Ann Ist Super Sanita. 45(3), 246-50.
  6. H. D. Dorr & V. Meineke. (2006). Appropriate radiation accident medical management: necessity of extensive preparatory planning. Radiat Environ Biophys. 45(4), 237-44. DOI: 10.1007/s00411-006-0068-x
  7. M. Selikson, M. Felice, R. Forrest, L. Lodhi, J. McCue & J. Reilley. (1996). A portable survey meter method for locating and quantifying removable contamination after 131I therapies. Health Phys.70(2), 245-9. DOI: 10.1097/00004032-199602000-00013
  8. P. E. Fehlau & G. S. Brunson. (1983). Coping with Plastic Scintillators in Nuclear Safeguards. IEEE Transactions on Nuclear Science. 30(1), 158-161. DOI: 10.1109 https://doi.org/10.1109/TNS.1983.4332242
  9. M. Bahadori, S. M. Rezayat Sorkhabadi, S. Fazli Tabaei & D. D. Farhud. (2020). Convergence Science to Transform Biomedicine: A Narrative Review. Iran J Public Health. 49(2), 221-229. PMID: 32461929
  10. K. Markiewicz, J. A van Til & M. J. IJzerman. (2014). Medical devices early assessment methods: systematic literature review. Int J Technol Assess Health Care. 30(2), 137-46. DOI: 10.1017/S0266462314000026.
  11. K. B. Kim, K. Keum & C. Jang. (2017). Research on the Convergence of CCTV Video Information with Disaster Recognition and Real-time Crisis Response System. Journal of the Korea Convergence Society. 8(3), 15-22. DOI: 10.15207/JKCS.2017.8.3.015
  12. O. Ahn, J. E. HEE & S. Kim. (2017). Development of the Disaster Nursing Preparedness·Response Competency (DNPRC) Scale in terms of Convergence. Journal of the Korea Convergence Society. 8(7), 101-111. DOI: 10.15207/JKCS.2017.8.7.101
  13. K. Choi & J. K. Cho. (2018). Statistical analysis of national examination for radiological technologists in convergence perspective. Journal of the Korea Convergence Society. 9(5), 85-90. Doi.org/10.15207/JKCS.2018.9.5.085
  14. T. G. Adams & R. Casagrande. (2018). Screening internal contamination of inhaled and ingested radionuclides with hand-held survey meters. Health Phys, 114(3), 299-306. DOI: 10.1097/HP.0000000000000756
  15. M. J. Youngman. (2015). Review of methods to measure internal contamination in an emergency. J Radiol Prot. 35(2), R1-15. DOI: 10.1088/0952-4746/35/2/R1
  16. S. L. Sugarman, W. M. Findley, R. E. Toohey & N. Dainiak. (2018). Rapid response, dose assessment, and clinical management of a plutonium-contaminated puncture wound. Health Phys. 115(1), 57-64. DOI: 10.1097/HP.000000000000082.
  17. D. Cole & N. Martin-Burtart. (2018). Calibration of radiation portal monitors for characterization of historic low-level radioactive waste. Health Phys. 2115(3), 409-413. DOI: 10.1097/HP.0000000000000892
  18. M. C. Erdman, K. L. Miller & B. E. Achey. (2001). Experience with a medical waste portal monitoring system. Health Phys. 80(2 Suppl), S13-5.
  19. F. D. Amaro, C. M. Monteiro, J. M. Dos Santos & A. Antognini. (2017). Novel concept for neutron detection: proportional counter filled with 10B nanoparticle aerosol. Sci Rep. 9(7), 41699. DOI: 10.1038/srep41699
  20. Murakami M et al. (2018). Effect of radiological countermeasures on subjective well-being and radiation anxiety after the 2011 disaster: the fukushima health management survey. Int J Environ Res Public Health. 12;15(1), 124 DOI: 10.3390/ijerph15010124
  21. K. Rothkamm et al. (2013). Manual versus automated gamma-H2AX foci analysis across five European laboratories: can this assay be used for rapid biodosimetry in a large scale radiation accident? Mutat Res. 30;756(1-2), 170-3. doi: 10.1016/j.mrgentox.2013.04.012 Epub 2013 May 3.
  22. M. E. Rea, R. M. Gougelet, R. J. Nicolalde, J. A. Geiling & H. M. Swartz. (2010). Proposed triage categories for large-scale radiation incidents using high-accuracy biodosimetry methods. Health Phys. 98(2), 136-44. DOI: 10.1097/HP.0b013e3181b2840b
  23. J. T. Bushberg et al. (2007). Nuclear/radiological terrorism: emergency department management of radiation casualties. J Emerg Med. 32(1), 71-85. DOI: 10.1016/j.jemermed.2006.05.034
  24. S. A. Bland. (2004). Mass casualty management for radiological and nuclear incidents. J R Army Med Corps. 150(3 Suppl 1), 27-34. https://doi.org/10.1136/jramc-150-01-06
  25. S. M. Becker & S. A. Middleton. (2008). Improving hospital preparedness for radiological terrorism: perspectives from emergency department physicians and nurses. Disaster Med Public Health Prep, 2(3), 174-84. DOI: 10.1097/DMP.0b013e31817dcd9a
  26. J. Valentin & International Commission on Radiological Protection. (2005). Protecting people against radiation exposure in the event of a radiological attack. A report of The International Commission on Radiological Protection. Ann ICRP. 35(1), 1-110, iii-iv. DOI: 10.1016/j.icrp.2005.01.001