DOI QR코드

DOI QR Code

A Feasibility Study of Seawater Injection Nozzle Prototype Development by Using 3D Printing

3D 프린팅을 이용한 해수분사용 노즐 시제품 개발의 가능성 연구

  • Yoon, Seok-Tea (Ship Infra-Red Signature Research Center, Dong-Eui University) ;
  • Park, Jong-Chun (Dept. of Naval Architecture & Ocean Engineering, Busan National University) ;
  • Cho, Yong-Jin (Dept. of Naval Architecture & Ocean Engineering, Dong-Eui University)
  • 윤석태 (동의대학교 함정적외선신호연구소) ;
  • 박종천 (부산대학교 조선해양공학과) ;
  • 조용진 (동의대학교 조선해양공학과)
  • Received : 2020.11.11
  • Accepted : 2021.03.05
  • Published : 2021.03.31

Abstract

The seawater cooling system of naval ships is installed to remove the toxic substances generated by CBR (Chemical, Biological, and Radiological) warfare and reduce the infrared signature of naval ships from outside the hull. The dispersion range of the nozzle is determined according to the injection pressure of seawater and the nozzle type. Therefore, it is necessary to select the appropriate injection pressure and design the optimal nozzles to increase the seawater dispersion area and maximize the efficiency of the cooling system. In this study, the applying feasibility of 3D printing technology to produce an injection nozzle for the seawater cooling system was examined. To this end, the extruded plastic specimens were fabricated by 3D printing, and the physical properties of the specimens were estimated through tensile testing. After this, the strain and stress of the nozzle as a function of the pressure were simulated by applying the estimated results to the finite element analysis. The finite element analysis results showed that the nozzle remained within the elastic range at the optimal pressure. The nozzle was estimated to be structurally stable, and the possibility of this study was confirmed.

함정의 해수냉각 시스템은 화생방전에 의한 유해물질의 세척과 선체 외부의 적외선 신호를 저감하기 위해 설치된다. 시스템은 압력펌프, 각종 배관 그리고 해수분사용 노즐로 구성된다. 그리고 해수의 분사 압력과 노즐 종류에 따라 산포 범위가 결정된다. 따라서 해수의 산포 범위를 넓히고 해수냉각 시스템의 효율을 극대화하기 위해서는 적절한 분사 압력의 설정과 노즐의 최적 설계가 필요하다. 금속재료로 만들어지는 해수분사용 노즐은 초기 개발단계에서 금속 틀을 만들고 최적 성능을 만족할 때까지 수정된다. 이는 많은 시간과 비용을 유발하여 노즐개발에 어려움을 일으킨다. 따라서 본 연구에서는 해수분사용 노즐의 초기 개발단계에서 시제품을 생성하기 위한 3D 프린팅 기술의 적용 가능성을 확인하였다. 이를 위해 3D 프린팅 기술을 이용하여 압출 플라스틱 시험편을 제작하고 인장시험을 통해 시험편의 물리적 특성 값을 측정하였다. 그리고 측정 결과를 유한요소해석 조건에 적용해 해수의 분사 압력에 따른 노즐의 변형과 응력을 계산하였다. 유한요소해석 결과 노즐은 최적 압력에서 탄성 범위 내로 변화하였으며, 구조적으로 안정하다고 판단되어 본 연구의 가능성을 확인하였다.

Keywords

References

  1. S. T. Yoon, H. S. Jung and Y. J. Cho, "An Experimental Study on the Dispersion Characteristics of Seawater Injection Nozzle for Hull Cooling," Journal of the Korea Institute of Military Science and Technology, Vol. 20, No. 6, pp. 767-773, 2017. DOI : http://dx.doi.org/10.9766/KIMST.2017.20.6.767
  2. H. Lipson and M. Kurman, "Fabricated: The New World of 3D Printing," John Wiley & Sons, Inc. Canada, 1996.
  3. S. J. Jung and T. H. Lee, "Study of Trends in The Architecture and The Economic Efficiency of 3D Printing Technology," Journal of the Korea Academia-Industrial cooperation Society (Korea), Vol. 15, No. 10, pp. 6336-6343, 2014 DOI : http://dx.doi.org/10.5762/KAIS.2014.15.10.6336
  4. H. J. Park, M. B. Seo and K. B. Ju, "A Development of Work Item and Duration Estimation Method for 3D Printing based Building," Journal of the Korea Academia-Industrial cooperation Society (Korea), Vol. 18, No. 12, pp. 200-207, 2017 DOI : http://dx.doi.org/10.5762/KAIS.2017.18.12.200
  5. S. J. Park, J. H. Park, K. H. Lee and M. U. Lyu, "Deposition Strength of Specimens Manufactured Using Fused Deposition Modeling Type 3D Printer," Polymer(Korea), Vol. 40, No. 6, pp. 846-851, 2016 DOI : http://dx.doi.org/10.7317/pk.2016.40.6.846
  6. K. Park, Y. S. Kim and D. Y. Park, "Investigation into Directional Properties of Rapid Prototypes and Its Application to FE Analysis Considering Anisotropy," Journal of the Korean Society for Precision Engineering, Vol. 25, No. 11, pp. 126-133, 2008
  7. B. J. Kim, "Effect of Fused Deposition Conditions on the Fracture Behavior of 3D Printed Tensile Specimens," J. Korean Soc. Precis. Eng.(Korea), Vol. 37, No. 6, pp. 421-428, 2020 DOI : http://dx.doi.org/10.7736/JKSPE.020.048
  8. H. W. Choi, I. Y. Kang, G. W. Noh, A. N. Seo and J. M. Lee, "Finite Element Analysis of Wrist Orthosis with 3D Printing," J. Korean Soc. Radiol., Vol. 13, No. 7, 2019 DOI : http://dx.doi.org/10.7742/jksr.2019.13.7.947
  9. A. Dawood, B. M. Marti, V. S. Jackson and A. Darwood, "3D printing in dentistry," British Dental Journal, Vol. 219, No. 11, pp.521-529, 2015 DOI : http://dx.doi.org/10.1038/sj.bdj.2015.914
  10. S. Y. Hwang, E. I. Reyes, K. S. Moon, R. C. Rumpf and N. S. Kin, "Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process," Journal of Electronic Materials, Vol. 44, No. 3, pp.771-777, 2015 https://doi.org/10.1007/s11664-014-3425-6
  11. "Plastics - Determination of tensile properties - Part 2: Test conditions for moulding and extrustion plastics," Korean Standards Association(KSA), Republic of Korea, 2018.
  12. J. Cross, "Active Hull Cooling Installation Proposal CFAV Quest," Davis Engineering Research Report, pp. 1-21, 2011.
  13. I. M. Smith, D. V. Griffiths and L. Margetts, "Programming the Finite Element Method, 5th Edition," John Wiley & Sons, Inc. Canada, 2013.
  14. N. Moller, S. O. Hansson, J. E. Holmberg, C. Rollenhagen "Handbook of Safety Principles," John Wiley & Sons, 2017