DOI QR코드

DOI QR Code

Effect of Guide Fin Structures and Boundary Parameters on Thermal Performances of Heat Exchanger for Waste Heat Recovery Thermoelectric Generator

가이드 핀 구조와 경계 파라미터가 폐열 회수용 열전발전 열교환기의 열적 성능에 미치는 영향

  • Received : 2020.10.06
  • Accepted : 2021.03.05
  • Published : 2021.03.31

Abstract

The present study examined the effects of various guide fin structures and boundary parameters on the thermal performance of heat exchangers used in heat recovery thermoelectric generators. The heat transfer rate and pressure drop of the heat exchangers without fins, with circular fins, with triangular fins, and with combined circular and triangular fins were simulated numerically using ANSYS 19.1 commercial code to confirm the effect of the guide fin structures. The heat transfer rate of the heat exchanger with combined fins was 27.0%, 5.2%, and 1.5% higher than those without fins, with circular fins, and with triangular fins, respectively. The pressure drop characteristic of the heat exchanger with the combined fins was 28.3% higher than that without fins but 9.2% and 10.5% lower than those with circular fins and with triangular fins, respectively. The heat exchanger with combined fins as the optimal model showed the highest heat transfer rate of 5664.9 W and pressure drop of 1454.02 Pa for highest hot gas temperature, maximum flow rates of hot gas and coolant, and lowest coolant temperature.

본 연구는 다양한 가이드 핀 구조와 경계 파라미터가 폐열 회수 열전발전용 열교환기의 열적 성능에 미치는 영향에 대하여 다룬다. 가이드 핀 구조의 영향을 확인하기 위하여 ANSYS 19.1 소프트웨어를 사용하여 핀이 없는 유형, 삼각형 핀, 원형 핀, 원형 핀과 삼각 핀 조합 열교환기의 열전달율 및 압력 강하 특성을 수치해석 하였다. 원형 핀과 삼각 핀 조합 열교환기는 핀이 없는 열교환기, 원형 핀 또는 삼각 핀이 있는 원형 핀 또는 삼각 핀 열교환기와 비교하여 각각 27.0%, 5.2% 및 1.5% 높은 열전달율을 나타내었다. 그리고 복합 핀 열교환기의 압력강하는 핀이 없는 열교환기와 비교하여 28.3% 높았지만, 복합 핀 열교환기와 비교하여 9.2% 및 10.5% 낮은 압력강하 특성을 나타내었다. 최적모델로서 복합 핀 열교환기는 최대 고온 가스 및 냉각수 질량 유량, 최고 고온 가스 온도 그리고 최저 냉각수 온도 조건에서 최대 열전달율 5664.9 W 및 최대 압력강하 1454.02 Pa을 나타내었다.

Keywords

References

  1. Y. Zhao, S. Wang, M. Ge, Z. Liang, Y. Liang, Y, Li, "Performance analysis of automobile exhaust thermoelectric generator system with media fluid", Energy Conversion and Management, Vol.171, pp.427-437, 2018 DOI: https://doi.org/10.1016/j.enconman.2018.06.006
  2. X. Liu, Y. D. Deng, K. Zhang, M. Xu, Y. Xu, C. Q. Su, "Experiments and simulations on heat exchangers in thermoelectric generator for automotive application", Applied Thermal Engineering, Vol.71, No.1, pp.364-370, 2014. DOI: https://doi.org/10.1016/j.applthermaleng.2014.07.022
  3. K. S. Garud, J. H. Seo, M. S. Patil, Y. M. Bang, Y. D. Pyo, C. P. Cho, M. Y. Lee, "Thermal-electrical- structural performances of hot heat exchanger with different internal fins of thermoelectric generator for low power generation application", Journal of Thermal Analysis and Calorimetry, Online first(Accepted on 13 Mar. 2020), pp.1-33, 2020. DOI: http://dx.doi.org/10.1007/s10973-020-09553-7
  4. K. S. Garud, J. H. Seo, C. P. Cho, M. Y. Lee, "Artificial Neural Network and Adaptive Neuro-Fuzzy Interface System Modelling to Predict Thermal Performances of Thermoelectric Generator for Waste Heat Recovery", Symmetry, Vol.12, No.2, 259, 2020. DOI: http://dx.doi.org/10.3390/sym12020259
  5. M. Y. Lee, J. H. Seo, H. S. Lee, K. S. Garud, " Power Generation, Efficiency and Thermal Stress of Thermoelectric Module with Leg Geometry, Material, Segmentation and Two-Stage Arrangement", Symmetry, Vol.12, No.5, 786, 2020. DOI: http://dx.doi.org/10.3390/sym12050786
  6. X. Jia, Y. Gao, "Optimal design of a novel thermoelectric generator with linear-shaped structure under different operating temperature conditions", Applied Thermal Engineering, Vol.78, pp.533-542, 2015 DOI: https://doi.org/10.1016/j.applthermaleng.2014.12.011
  7. C. C. Weng, M. J. Huang, "A simulation study of automotive waste heat recovery using a thermoelectric power generator", International journal of thermal sciences, Vol.71, pp.302-309, 2013. DOI: https://doi.org/10.1016/j.ijthermalsci.2013.04.008
  8. Y. Wang, S. Li, X. Xie, Y. Deng, X. Liu, C. Q. Su, "Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger", Applied Energy, Vol.218, pp.391-401, 2018. DOI: https://doi.org/10.1016/j.apenergy.2018.02.176
  9. S. Bai, H. Lu, T. Wu, X. Yin, X. Shi, L. Chen, "Numerical and experimental analysis for exhaust heat exchangers in automobile thermoelectric generators", Case Studies in Thermal Engineering, Vol.4, pp.99-112, 2014. DOI: https://doi.org/10.1016/j.csite.2014.07.003
  10. D. W. Lee, "Experimental Study on Thermoelectric Generator Performance for Waste Heat Recovery in Vehicles", Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol.26, No.6, pp.287-293, 2014. DOI: http://dx.doi.org/10.6110/KJACR.2014.26.6.287