DOI QR코드

DOI QR Code

Study on the Calculation of the Blast Pressure of Vapor Cloud Explosions by Analyzing Plant Explosion Cases

플랜트 폭발 사례 분석을 통한 증기운 폭발의 폭압 산정법 연구

  • Received : 2020.08.03
  • Accepted : 2020.11.24
  • Published : 2021.02.28

Abstract

Vapor cloud explosions show different characteristics from that caused by ordinary TNT explosives and their loading effect is similar to pressure waves. Typical methods used for blast pressure calculations are the TNT-equivalent method and multi-energy method. The TNT-equivalent method is based on shock waves, similar to a detonation phenomenon, and multi-energy method is based on pressure waves, similar to a deflagration phenomenon. This study was conducted to derive an appropriate blast pressure by applying various plant explosion cases. SDOF analysis and nonlinear dynamic analysis were performed to compare the degree of deformation and damage of the selected structural members for the explosion cases. The results indicated that the multi-energy method was more exact than the TNT-equivalent method in predicting the blast pressure of vapor cloud explosions. The blast pressure of vapor cloud explosion in plants can be more accurately calculated by assuming the charge strength of multi-energy method as 7 or 8.

플랜트 증기운 폭발은 TNT 폭발물에 의한 폭발과는 다른 특징이 있으며 압력파 양상과 비슷하다. 대표적인 유형의 폭압 산정법은 TNT 등가량 환산법과 멀티에너지법이 있다. TNT 등가량 환산법은 폭굉과 같은 충격파를 전제로 하며, 멀티에너지법은 폭연과 같은 압력파를 전제로 한다. 본 연구는 세 가지 플랜트 폭발 사례를 적용하여 플랜트 증기운 폭발의 적절한 폭압을 도출하기 위한 연구를 수행하였다. 폭발 사례에 대하여 피해를 입은 부재를 선정한 후, 단자유도 해석과 비선형 동적 해석을 수행하여 변형과 손상 정도를 비교분석하였다. 구조물의 피해 정도는 TNT 등가량 환산법보다는 멀티에너지법에 의한 폭압을 사용한 경우가 실제 상황에 더욱 근접한 것으로 나타났다. 또한, 멀티에너지법의 폭발강도계수를 7 또는 8로 가정할 경우 증기운 폭발의 폭압 모델을 비교적 정확하게 산정할 수 있을 것으로 판단된다.

Keywords

References

  1. Alonso, F.D., Ferradas, E.G., Perez, J.F.S., Aznar, A.M., Gimeno, J.R. (2006) Characteristic Overpressure-Impulse-Distance curves for Vapour Cloud Explosions Using the TNO Multi-Energy Model, J. Haz. Mater., 137(2), pp.734-741. https://doi.org/10.1016/j.jhazmat.2006.04.005
  2. ASCE (2010) Design of Blast-Resistant Buildings in Petrochemical Facilities, American Society of Civil Engineers, Virginia, p.300.
  3. Assael, M.J., Kakosimos, K.E. (2010) Fires, Explosions, and Toxic Gas Dispersions, CRC press, New York, p.346.
  4. Autodyn (2005) Autodyn Theory Manual Revision 4.3, Century Dynamics, p.235.
  5. CCPS (1996) Guidelines for Evaluating Process Plant Buildings for External Explosions and Fires, CCPS, New York, p.189.
  6. CPR14E (2005) Methods for the Calculation of Physical Effects, TNO, Netherlands, p.870.
  7. Jacques, E., Lloyd, A., Saatcioglu, M. (2013) Predicting Reinforced Concrete Response to Blast Loads, Canadian J. Civ. Eng., 40(5), pp.427-444. https://doi.org/10.1139/L2012-014
  8. Kim, H.S., Ahn, H.S., Ahn, J.G. (2014) Erosion Criteria for the Blast Analysis of Reinforcement Concrete Members, J. Archit. Inst, Korea Struct. & Constr., 30(3), pp.21-28. https://doi.org/10.5659/JAIK_SC.2014.30.3.021
  9. Mishra, K.B., Wehrstedt, K.-D., Krebs, H. (2014) Amuay Refinery Disaster: The Aftermaths and Challenges Ahead, Fuel Proc. Tech., 119, pp.198-203. https://doi.org/10.1016/j.fuproc.2013.10.025
  10. Ngo, T., Lumantarna, R., Whittaker, A., Mendis, P. (2015) Quantification of the Blast-Loading Parameters of Large-Scale Explosions, J. Struct. Eng., 141(10), pp.1-11.
  11. PDC-TR 06-08 (2008) Single Degree of Freedom Structural Response Limits for Antiterrorism Design, US Army Corps of Engineers, p.35.
  12. Rashid, Z.A., Alias, A.B., Hamid, K.H.K., Bani, M., Harbawi, M.E. (2015) Analysis the Effect of Explosion Efficiency in the TNT Equivalent Blast Explosion Model, ICGSCE 2014, pp.381-390.
  13. RR512 (2007) Review of Significance of Societal Risk for Proposed Revision to Land Use Planning Arrangements for Large Scale Petroleum Storage Sites, Health and Safety Executive, p.40.
  14. RR718 (2009) Buncefield Explosion Mechanism Phase 1, Health and Safety Executive, p.226.
  15. RR1113 (2017) Review of Vapour Cloud Explosion Incidents, Health and Safety Executive, p.326.
  16. Sharma, R.K., Gurjar, B.R., Wate, S.R., Ghuge, S.P., Agrawal, R. (2013) Assessment of an Accidental Vapour Cloud Explosion: Lessons from the Indian Oil Corporation Ltd. Accident at Jaipur, India, J. Loss Prev. Process. Ind., 26, pp.82-90. https://doi.org/10.1016/j.jlp.2012.09.009
  17. UFC3-340-02 (2008) Structures to Resist the Effects of Accidental Explosions, DoD, p.1943.
  18. Van den Berg, A.C. (1985) The multi-energy method: A Framework for Vapour Cloud Explosion Blast Prediction, J. Haz. Mater., 12(1), pp.1-10. https://doi.org/10.1016/0304-3894(85)80022-4
  19. Weidlinger (2009) Characterising the Response of Reinforced Concrete Cladding Panels to Vapour Cloud Explosions, Weidlinger Associates Ltd, p.66.
  20. Zhu, R., Li, X., Hu, X., Hu, D. (2020) Risk Analysis of Chemical Plant Explosion Accidents Based on Bayesian Network, Sustainability, 12(1), pp.1-20. https://doi.org/10.3390/su12010001