초록
일반적으로 사람들은 외출 시 실시간 날씨 및 기온 등을 참고하여 입고 나갈 의류를 선택하게 된다. 그러나 개인이 실시간 날씨 정보, 자신의 체감 온도 정보 등을 활용하여 자신이 소장한 의류 중에서 알맞은 의류를 선택하는 것은 어려운 일이다. 이러한 문제를 도와주기 위해 개발된 기존의 의류 추천 시스템들은 의류 범주가 명확하게 설정되어 있지 않고, 사용자가 소지하고 있지 않은 의류를 추천하는 문제점이 있다. 또한 사용자별 체감 온도를 고려하지 않아 사용자에게 적절하지 못한 의류를 추천하는 경우가 발생한다. 이러한 문제점들을 해결하기 위하여 본 연구에서는 사용자가 소장하고 있는 의류에 대해 의류 범주를 결정하여 등록하고, 사용자별 체감 온도와 실시간 날씨 정보를 함께 고려하여 개인별 맞춤형 의류를 추천하는 시스템을 개발하였다. 날씨 정보의 경우, 단순한 기온, 풍향 등의 기상 정보만이 아니라 온도 민감도를 이용하여 개인별 체감 온도에 따른 의류를 추천하였다. 본 시스템을 평가하기 위해 대학생 65명을 대상으로 만족도 조사를 실시하였다. 그 결과 추천된 의류에 대해 만족한다는 의견이 80%를 차지하여 본 시스템의 만족도는 양호한 것을 확인할 수 있었다. 따라서 본 시스템을 사용할 경우, 개인별 체감 온도를 반영하여 개인이 소장한 의류를 기반으로 추천받게 됨으로써 실생활에서 활용도가 매우 높을 것으로 기대된다.
In general, people choose clothes to wear when they go out, referring to real-time weather and temperature. However, it is difficult for an individual to use real-time weather information and his or her temperature sensitivity information to choose the right clothes from among the clothes he or she owns. Existing clothing recommendation systems developed to help with these problems have problems recommending clothes that are not clearly set in the clothing category and are not in the possession of the user. In addition, user-specific temperature sensitivity is not taken into account, resulting in inappropriate clothing recommendations for users. To solve these problems, this study developed a system that determines and registers clothing categories for the clothing owned by the user, and recommends customized clothing for each user by considering temperature sensitivity and real-time weather information. In the case of weather information, not only weather information such as temperature and wind direction, but also clothes based on temperature sensitivity were recommended based on the calculation of temperature sensitivities. A satisfaction survey of 65 university students was conducted to assess the system. As a result, 80% of the respondents were satisfied with the recommended clothing, indicating that the satisfaction of the system was good. Therefore, it is expected that this system will be highly utilized in real life as it will be recommended based on clothes owned by individuals, reflecting individual temperature sensitivity.