참고문헌
- Korea Communications Agency. (2020). Change in the media market due to the COVID-19 outbreak. Korea Communications Agency.
- Korea Press Foundation. (2019). Media users in Korea 2019.
- Aju Business Daily. (2020.05.02.). In march, after corona 19, users flocked to YouTube. https://www.ajunews.com/view/20200502180233529
- Maeil Business News Korea. (2020.07.29.). Lansun training is booming in the era of 'Holmt' untact armed with a content subscription economy. https://www.mk.co.kr/news/culture/view/2020/07/774211/
- S. C. Jo & Y. J. Han. (2020). A study on the effect of health belief factors on the acceptance of mobile healthcare: Focusing on mediating effects of perceived usefulness. Regional Industry Review, 43(2), 263-280. https://doi.org/10.33932/rir.43.2.12
- J. S. Lim. (2019). The study on preventive behavior to particulate matter by using smart phone: Focused on extended technology acceptance model and health belief model. Doctoral Dissertation, Kangwon National University.
- F. Davis. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Doctoral thesis, MIT Sloan School of Management, Cambridge, MA.
- M. Y. Chuttur. (2009). Overview of the technology acceptance model: Origins, developments and future directions. Sprouts: Working Papers on Information Systems, 9(37), Indiana University, USA.
- M. Vukovic, S. Pivac & D. Kundid. (2019). Technology acceptance model for the internet banking acceptance in split. Business Systems Research, 10(2), 124-140. DOI: 10.2478/bsrj-2019-022.
- F. D. Davis, R. P. Bogozzi, & P. R. Warshaw. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982
- V. Venkatesh & F. D. Davis. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451-481. https://doi.org/10.1111/j.1540-5915.1996.tb00860.x
- T. A. Sykes, V. Venkatesch, & S. Gosain. (2009). Model of acceptance with peer support: A social network perspective to understand individual-level-system use. MIS Quarterly, 33(2), 371-393. DOI: 10.2307/20650296
- F. Mazhar, M. Rizwan, U. Fiaz, S. Ishrat, M. S. Razzaq, & T. N. Khan. (2014). An investigation of factors affecting usage and adoption on internet and mobile banking in Pakistan. International Journal of Accounting and Financial Reporting, 4(2), 478-501. DOI: 10.5296/ijafr.v4i2.6586
- A. Chayomchai. (2020). The online technology acceptance model of generation-Z people in Thailand during COVID-19 crisis. Management & Marketing. Challenges for the Knowledge Society, 15, 496-513. DOI: 10.2478/mmcks-2020-0029
- G. C. Nistor. (2019). An extended technology acceptance model for marketing strategies in social media. Review of Economic and Business Studies, 12(1), 127-136. DOI: 10.1515/rebs-2019-0086
- V. Venkatesch. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365. https://www.jstor.org/stable/23011042 DOI: 10.1287/isre.11.4.342.11872
- E. T. Lwoga & N. B. Lwoga. (2017). User acceptance of mobile payment: The effects of user-centric security, system characteristics and gender. The Electronic Journal of Information Systems in Developing Countries, 81(3), 1-24. DOI: 10.1002/j.1681-4835.2017.tb00595.x
- S. A. Sair & R. Q. Danish. (2018). Effect of performance expectancy and effort expectancy on the mobile commerce adoption intention though personal innovativeness among Pakistan consumers. Pakistan Journal of Commerce and Social Sciences, 12(2), 501-520.
- T. Daim, A. Basoglu, D. Gunay, C. Yildiz, & F. Gomez. (2013). Exploring technology acceptance for online food services. International Journal of Business Information Systems, 12(4), 383-403. DOI: 10.1504/IJBIS.2013.053214
- R. Agarwal & J. Prasad. (1997). The role of innovation characteristics and perceived voluntariness in the acceptance of information technologies. Decision Science, 28(3), 557-582 DOI:10.1111/j.1540-5915.1997.tb01322.x
- J. Lu, J. E. Yao, & C. S. Yu. (2005). Personal innovativeness, social influences and adoption of wireless: Internet services via mobile technology. Journal of Strategic Information Systems, 14(3), 245-268. DOI: 10.1016/j.jsis.2005.07.003
- J. M. Ju & B. G. Park. (2006). A study on factors in adopting the interactive TV from the perspective of technology acceptance model. Korean Journal of Journalism & Communication Studies, 50(1), 332-354.
- S. H. Son, Y.J. Choi, & H. S. Hwang. (2012). Understanding acceptance of smartphone among early adopters using extended technology acceptance model. Korean Journal of Journalism & Communication Studies, 55(2), 227-251.
- D. F. Midgley & G. R. Dowling. (1993). A longitudinal study of product form innovation: The interaction between predispositions and social messages. Journal of Consumer Research, 19(4), 611-625. DOI: 10.1086/209326
- S. J. Park & J. W. Lee. (2018). The effect of service quality and user innovativeness of VR sports broadcasting on acceptance intention: Focusing on the extended technology acceptance model. Journal of Sport and Leisure Studies, 71, 269-282. https://doi.org/10.51979/KSSLS.2018.02.71.269
- S. J. Park, K. H. Ko, W. J. Kim, J. H. Choi, C. Park, D. Y. Youn, & D. Y. Yang. (2019). The effect of quality of service of smart machine on user innovation and user intention using technology acceptance model. Journal of Sport and Leisure Studies, 75, 267-278. https://doi.org/10.51979/KSSLS.2019.02.75.267
- M. J. Kim & S. B. Lee. (2017). The effect of the innovativeness of delivery application users on perceived traits, satisfaction, and continuous usage intention: Using the extended technology acceptance model. International Journal of Tourism and Hospitality Research, 31(1), 199-214. DOI: 10.21298/ijthr.2017.01.31.1.199
- S. H. Gu, D. W. Kim, C. M. Park, & K. H. Kim. (2013). Influence of LTE characteristic and personal innovativeness on LTE smart phone acceptance. Journal of Digital Contents Society, 14(3), 291-301. DOI: 10.9728/dcs.2013.14.3.291
- C. W. Park & H. J. Jeong. (2012). An empirical study on the effects of personal and systematic characteristics on the acceptance of technologically innovative products: With focus on cloud computing. Asia-Pacific Journal of Business Venturing and Entrepreneurship, 7(2), 63-76. DOI: 10.16972/apjbve.7.2.201207.63
- N. K. Janz & M. H. Becker. (1984). The health belief model: A decade later. Health Education Quarterly, 11, 1-47. DOI: 10.1177/109019818401100101
- P. Sheeran & C. Abraham. (2001). The health belief model. Predicting health behavior. Buckingham: Open University Press.
- B. K. Lee, Y. K. Sohn, S. O. Lee, M. Y. Yoon, M. H. Kim, & C. R. Kim. (2014). An efficacy of social cognitive theory to predict health behavior: A meta-analysis on the health belief model studies in Korea. Journal of Public Relations, 18(2), 163-206. DOI: 10.15814/jpr.2014.18.2.163
- K. Glanz, B. K. Rimer, & K. Viswanath. (2008). Health behavior and health education: Theory, research and practice. San Francisco, CA: Jossey-Bass.
- Y. Reisinger & F. Mavondo. (2005). Travel anxiety and intentions to travel internationally: Implications of travel risk perception. Journal of Travel Research, 43(3), 212-225. DOI: 10.1177/0047287504272017
- J. A. Harrison, P. D. Mullem, & L. W. Green. (1992). A meta-analysis of studies of the health belief model with adults. Health Education Research, 7, 107-116. DOI: 10.1093/her/7.1.107
- R. S. Zimmerman & D. Vernberg. (1994). Model of preventive health behaviour: Comparison, critique, and meta-analysis. Advances in Medical Sociology, 4, 45-47. DOI: 10.1080/10410236.2010.521906
- M, E. Choi, P. K. Seo, M. I. Choi, H. J. Paek. (2014). Factors associated with health-specific TV viewing intention: Application of the technology acceptance model. Korean Journal of Journalism & Communication Studies, 58(6), 362-389.
- Y. W. Kim, H. N. Lee, H. I. Kim, & H. J. Moon. (2017). A study on usage effect and acceptance factors of a particulate matter application (App). Journal of Public Relations, 21(4), 114-142. DOI: 10.15814/jpr.2017.21.4.114
- A. S. Ahadzadeh, S. P. Sharif, F. S. Ong, & K. W. Khong. (2015). Integrating health belief model and technology acceptance model: An investigation of health-related internet use. Journal of Medical Internet Research, 17(2), e45. DOI: 10.2196/jmir.3564
- S. O. Lee & S. H. Lee. (2018). A study on the factors influencing acceptance of social media-based smart commerce service through personal innovativeness. Journal of Digital Contents Society, 19(3), 547-559. https://doi.org/10.9728/dcs.2018.19.3.547
- R. A. Sanchez & A. D. Hueros. (2010). Motivational factors that influence the acceptance of Moodle using TAM. Computers in Human Behavior, 26, 1632-1640. DOI: 10.1016/j.chb.2010.06.011
- J. H. Kim & J. H. Cho. (2019). Investigation of effects of individuals social viewing of fine dust information obtained through social media on behavioral intentions of disease prevention: Application of health beliefs model. Korean Journal of Broadcasting and Telecommunication Studies, 33(4), 37-63.
- H. S. Kwon. (2020). A study on the categorization and acceptance factors of e-book users: Focusing on MZ generation. Doctoral Dissertation, Konkuk University.
- J. F. Engle, R. D. Blackwell, & P. W. Miniard. (1995). Consumer behavior. Illinois: The Dryden Press.