DOI QR코드

DOI QR Code

Topic Modeling-Based Domestic and Foreign Public Data Research Trends Comparative Analysis

토픽 모델링 기반의 국내외 공공데이터 연구 동향 비교 분석

  • 박대영 (영남대학교 경영학과 학부과정) ;
  • 김덕현 (경북대학교 통계학과 학부과정) ;
  • 김건욱 (대구디지털산업진흥원 빅데이터활용센터)
  • Received : 2020.11.12
  • Accepted : 2021.02.20
  • Published : 2021.02.28

Abstract

With the recent 4th Industrial Revolution, the growth and value of big data are continuously increasing, and the government is also actively making efforts to open and utilize public data. However, the situation still does not reach the level of demand for public data use by citizens, At this point, it is necessary to identify research trends in the public data field and seek directions for development. In this study, in order to understand the research trends related to public data, the analysis was performed using topic modeling, which is mainly used in text mining techniques. To this end, we collected papers containing keywords of 'Public data' among domestic and foreign research papers (1,437 domestically, 9,607 overseas) and performed topic modeling based on the LDA algorithm, and compared domestic and foreign public data research trends. After analysis, policy implications were presented. Looking at the time series by topic, research in the fields of 'personal information protection', 'public data management', and 'urban environment' has increased in Korea. Overseas, it was confirmed that research in the fields of 'urban policy', 'cell biology', 'deep learning', and 'cloud·security' is active.

최근 4차 산업혁명으로 빅데이터의 성장과 가치는 지속적으로 증가하고 있으며, 정부에서도 공공데이터 개방과 활용에 적극적으로 노력하고 있다. 하지만 여전히 시민들의 공공데이터 활용 요구수준에는 미치지 못하는 상황이며, 현 시점에서 공공데이터 분야의 연구동향 파악과 발전 방향을 모색할 필요가 있다. 이에 본 연구에서는 공공데이터와 관련된 연구 동향을 파악하기 위해서 텍스트 마이닝 기법에서 주로 활용되는 토픽 모델링을 활용하여 분석하였다. 이를 위해 국내외 학술논문 중 '공공데이터', 'Public Data'의 키워드가 포함된 논문(국내 1,437건, 국외 9,607건)을 수집하여 LDA 알고리즘 기반의 토픽 모델링을 수행하였으며, 국내외 공공데이터 연구 동향을 비교 분석하여 정책적 시사점을 제시하였다. 분석 결과 국내의 경우 공공분야 정책 연구가 주를 이루고 있으며, 국외는 의료, 건강 관련 연구가 높게 나타났다. 토픽별 시계열로 살펴보면 국내는 '개인정보보호', '공공데이터 관리', '도시 환경' 분야의 연구가 증가하였으며, 국외는 '도시정책', '세포 생물학', '딥러닝', '클라우드·보안' 분야 연구가 활성화되고 있음을 확인할 수 있었다.

Keywords

References

  1. D.M.Bae & H.S.Park, & G.H.Oh. (2013).Big data trends and policy lmplications.KISDI,25(10), 37-74.
  2. S.O.Yun, & J.W.Hyun. (2019). An Analysis of Open Data Policy in Korea: Focused on National Core Data in Open Data Portal . Korea Public Mangemnet Review, 33(1), 219-247. DOI :10.24210/kapm.2018.33.1.010
  3. D.G.Kim & Y.H.Lee & W.K.Joo &, E.J.Kim, & Y.H.Lee(2014). A Case Study on Classification System Design for Public Sector Information Typology. Journal of Digital Convergence, 12(4), 51-68. DOI :10.14400/JDC.2014.12.4.5
  4. Y.I.Cha & S.K.Choi & K.S.Han. (2017). An Empirical Study on the Influence on Public Data Usage in Private Business Sectors. Journal of Digital Convergence, 15(6), 9-17. DOI :10.14400/JDC.2017.15.6.9
  5. S.B.Cho, & S.H.Ha. (2020). Analysis of Open Government Data Demand Using Structural Topic Modeling. Journal of Information Technology and Architecturte 17(2), 103-118. DOI : 10.22865/jita.2020.17.2.103
  6. Wang, V., & Shepherd, D. (2020). Exploring the extent of openness of open government data-A critique of open government datasets in the UK. Government Information Quarterly, 37(1), 101405. DOI : 10.1016/j.giq.2019.101405
  7. Wirtz, B. W., Weyerer, J. C., & Rosch, M. (2019).Open government and citizen participation: an empirical analysis of citizen expectancy towards open government data. International Review of Administrative Sciences, 85(3), 566-586. DOI :10.1177 https://doi.org/10.1177/0020852317719996
  8. W.S.Lee & S.Y.Sohn. (2015). Topic Model Analysis of Research Trend on Spatial Big Data .Journal of the Korean Institute Of Industrial Engineers, 41(1), 64-73. DOI : 10.7232/JKIIE.2015.41.1.064
  9. S.S.Han & D.W.Yang. (2017). Analysis of Research Trends Related to Start-Up Using Text Mining. Asia-Pacific Journal of Business Venturing and Entrepreneurship, 12(5), 1-12 https://doi.org/10.16972/APJBVE.12.5.201710.1
  10. M.S.Chung, & J.Y.Lee. (2018). Systemic Analysis of Research Activities and Trends Related to Artificial Intelligence(A.I.) Technology Based on Latent Dirichlet Allocation (LDA) Model. Journal of the Korea Industrial Information Systems Research, 23(3), 87-95.. DOI : 10.9723/JKSIIS.2018.23.3.087
  11. K.C.Park & C. H. Lee.(2019). A Study on the Research Trends for Smart City using Topic Modeling. Journal of Internet Computing and Services, 20(3), 119-128. DOI : 10.7472/JKSII.2019.20.3.119
  12. K.W.Cho & Y. W. Woo. (2019). Topic Modeling on Research Trends of Industry 4.0 Using Text Mining. Journal of the Korea Institute of Information and Communication Engineering, 23(7), 764-770. DOI : 10.6109/jkiice.2019.23.7.764
  13. T.K.Kim, H.R.Choi, H.C.Lee. (2016). A Study on the Research Trends in Fintech using Topic Modeling.,Journal of Korea Academia-Industrial cooperation Society 17(11), 670-681. DOI : 10.5762/KAIS.2016.17.11.670
  14. C.H.Nahm (2016). An Illustrative Application of Topic Modeling Method to a Farmer's Diary. Institute of Cultural Studies 22(1).89-135 DOI : 10.3743/KOSIM.2013.30.1.007
  15. J.H.Park, & M.Song. (2013). A Study on the Research Trends in Library & Information Science in Korea using Topic Modeling. Journal of the Korea Society for Information Management., 30(1), 7-32. DOI : 10.3743/KOSIM.2013.30.1.007
  16. Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84. DOI: 10.1145/2133806.2133826
  17. J.H.Park & H.J.Oh. (2017). Comparison of Topic Modeling Methods for Analyzing Research Trends of Archives Management in Korea : focused on LDA and HDP. Journal of Korean Library and Information Science Society, 48(4), 235-258. DOI : 10.16981/kliss.48.4.201712.235
  18. S.K.Kim, & S. Y. Jang. (2016). Analysis of Research Trends in Domestic Industrial Engineering Using Topic Modeling. Korean Institute Of Industrial Engineers Journal of the Spring Joint Academic Conference, 3996-4018..
  19. J.H.Kim & S.Y.Yoon. (2019). Analysis of Policy Changes and User Satisfaction of Road Transportation Services using Opinion Mining Technique.International journal of highway engineering, 21(5), 65-74. DOI : 10.7885/JHE.2019.21.5.065
  20. S.Y.Lee & H.J.Moon.(2017).Analysis of traffic research trend through big data analysis of world traffic related research . Korean Academic Society Of Business Administration, 299-313.
  21. J.Y.Sohn (2020). Big Markets, Big Names and Big Networks in Big Data Research: Urban Big Data Research Trends in International Academic Journals. Journal of the Korea Geographical Society, 55(2), 161-179 DOI : 10.22776/kgs.2020.55.2.161
  22. S.Y.Chung. (2019). Research Trends and Issues Analysis on the Use of Artificial Intelligence in Public Administration. Journal of Korean Associastion for Regional Information Society, 22(4), 175-207.
  23. H.J.Han & S.W.Hwang & J.M.Lee &H.J.Oh (2020).Analysis of Current Status and Improvement Plans of the User Service in Open Data Portal - Focusing on Citizen Participation Data Portal. Journal of Korean Library and Information Science Society, 51(1), 255-279. DOI :10.16981/kliss.51.202003.225
  24. Y.W.Hong (2014). A study on the invigorating strategies for open government data. Journal of the Korean data & information science society , 25(4), 769-777. DOI :10.7465/jkdi.2014.25.4.769