DOI QR코드

DOI QR Code

THE BERGMAN METRIC AND RELATED BLOCH SPACES ON THE EXPONENTIALLY WEIGHTED BERGMAN SPACE

  • Byun, Jisoo (Department of Mathematics Education, Kyeung-Nam University) ;
  • Cho, Hong Rae (Department of Mathematics, Pusan National University) ;
  • Lee, Han-Wool (Department of Mathematics, Pusan National University)
  • Received : 2020.11.26
  • Accepted : 2021.01.15
  • Published : 2021.01.31

Abstract

We estimate the Bergman metric of the exponentially weighted Bergman space and prove many different geometric characterizations for related Bloch spaces. In particular, we prove that the Bergman metric of the exponentially weighted Bergman space is comparable to some Poincaré type metric.

Keywords

References

  1. H. Arroussi and J. Pau, Reproducing kernel estimates, bounded projections and duality on large weighted Bergman spaces, J. Geom. Anal. DOI 10.1007/s12220-014-9513-2.
  2. A. Borichev, R. Dhuez and K. Kellay, Sampling and interpolation in large Bergman and Fock spaces, J. Funct. Aanl. 242 (2007), 563-606. https://doi.org/10.1016/j.jfa.2006.09.002
  3. M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis, de Gruyter Expositions in Mathematics, 9. Walter de Gruyter & Co., Berlin, 1998.
  4. P. Lin and R. Rochberg, Hankel operators on the weighted Bergman spaces with exponential type weights, Integr. Equ. Oper. Theory 21 (1995), 460-483. https://doi.org/10.1007/BF01222018
  5. N. Marco, X. Massaneda and J. Ortega-Cerda, Intepolation and sampling sequence for entire functions, Geom. Funct. Anal., 13 (2003), 862-914. https://doi.org/10.1007/s00039-003-0434-7
  6. J. Pau and J. A. Pelaez, Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights, J. Funct. Aanl. 259 (2010), 2727-2756. https://doi.org/10.1016/j.jfa.2010.06.019
  7. K. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math., 23-3 (1993), 1143-1177. https://doi.org/10.1216/rmjm/1181072549
  8. K. Zhu, Distance and Banach space of holomorphic function on complex domains, J. London Math. Soc., 49 (1994), 163-182. https://doi.org/10.1112/jlms/49.1.163
  9. K. Zhu, Operator Theory in Function Spaces, Second ed., Math. Surveys Monogr., Vol.138, American Mathematical Society, Providence, RI, 2007.