DOI QR코드

DOI QR Code

ON THE TOUCHARD POLYNOMIALS AND MULTIPLICATIVE PLANE PARTITIONS

  • Kim, JunKyo (Department of Mathematics, Pusan National University)
  • Received : 2020.10.30
  • Accepted : 2020.11.08
  • Published : 2021.01.31

Abstract

For a positive integer n, let μd(n) be the number of multiplicative d-dimensional partitions of ${\prod\limits_{i=1}^{n}}p_i$, where pi denotes the ith prime. The number of multiplicative partitions of a square free number with n prime factors is the Bell number μ1(n) = ��n. By the definition of the function μd(n), it can be seen that for all positive integers n, μ1(n) = Tn(1) = ��n, where Tn(x) is the nth Touchard (or exponential ) polynomial. We show that, for a positive n, μ2(n) = 2nTn(1/2). We also conjecture that for all m, μ3(m) ≤ 3mTm(1/3).

Keywords

References

  1. G.E. Andrews, The Theory of Partitions Reading, Massachusetts: Addison-Wesley Publishing Company, 1976.
  2. S. Balakrishnan, S. Govindarajan, and N.S. Prabhakar, On the asymptotics of higher-dimensional partitions, J.Phys. A, A45, (2012), 055001 arXiv:1105.6231.
  3. E.T. Bell, Exponential polynomials, Ann. of Math. 35, (1934), 258-277. https://doi.org/10.2307/1968431
  4. W. Fulton, Young tableaux: With applications to representation theory and geometry LMSStudent Texts 35 Cambridge University Press, Cambridge, 1997.
  5. J.F. Hughes and J. Shallit, On the number of multiplicative partitions, Amer. Math. Monthly, 90, (1983), 468-471. https://doi.org/10.2307/2975729
  6. D.E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math., 34, (1970), 709-724. https://doi.org/10.2140/pjm.1970.34.709
  7. D.E. Knuth, The Art of Computer Programming, 3 Sorting and Searching, 2nd ed., Addison Wesley Longman, 1998.
  8. Shalosh B. Ekhad and Doron Zeilberger, Computational and Theoretical Challenges On Counting Solid Standard Young Tableaux, 2012, arXiv:1202.6229v1 [math.CO].
  9. R.P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999.
  10. J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge University Press, 1992.
  11. G.T. Williams, Numbers generated by the function $e^{e^{x-1}}$, Amer. Math. Monthly, 52, (1945), 323-327. https://doi.org/10.2307/2305292
  12. A. Yong, What is ... a Young tableau?, Notices Amer. Math. Soc., 54, (2007), 240-241.
  13. Y. Zhao, Young tableaux and the representations of the symmetric group, Harvard College Math Review, 2, (2008), 33-45.