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THE BERGMAN METRIC AND RELATED BLOCH SPACES

ON THE EXPONENTIALLY WEIGHTED BERGMAN SPACE

Jisoo Byun, Hong Rae Cho†, and Han-Wool Lee‡

Abstract. We estimate the Bergman metric of the exponentially weighted

Bergman space and prove many different geometric characterizations for

related Bloch spaces. In particular, we prove that the Bergman metric of
the exponentially weighted Bergman space is comparable to some Poincaré

type metric.

1. Introduction and main results

Let D denote the unit disc in the complex plane C.

Definition 1 (Class L). Let τ ∈ C∞(D) be a radial positive function on D.
We say that τ ∈ L (see [1] and [6]) if there exist constants A > 0 and B > 0
such that

(a) 0 < τ(z) ≤ A(1− |z|2), for z ∈ D;
(b) |τ(z)− τ(w)| ≤ B|z − w|, for z, w ∈ D.

The metric dsτ associated with τ is given by

ds2τ =
1

τ(z)2
dzdz̄.

By the condition (a), we know that the metric associated with τ is complete.
Suppose that γ(t), 0 ≤ t ≤ 1, is a piecewise smooth curve in D. The length

of γ(t) with respect to the metric is defined by

Lτ (γ) =

∫
γ

dsτ =

∫ 1

0

|γ′(t)|
τ(γ(t))

dt.

Then the distance pτ associated with τ is defined by

pτ (z, w) = inf{Lτ (γ) : γ(0) = z, γ(1) = w},
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where the infimum is taken for all piecewise smooth curves and z, w ∈ D.
We define

Lip(pτ ) = {f ∈ C(D) : ‖f‖pτ < +∞},
where

‖f‖pτ = inf{M : |f(z)− f(w)| ≤Mpτ (z, w)}.
Let B(τ) denote the space of analytic functions f on D such that

‖f‖B(τ) = sup{τ(z)|f ′(z)| : z ∈ D} < +∞.
For z, w in D, we define the induced distance (see [7] and [8]) for B(τ) by

dτ (z, w) = sup{|f(z)− f(w)| : ‖f‖B(τ) ≤ 1}.
We define

Lip(dτ ) = {f ∈ C(D) : ‖f‖dτ < +∞},
where

‖f‖dτ = inf{M : |f(z)− f(w)| ≤Mdτ (z, w)}.

Note that if τ(z) = 1− |z|2, then pτ is the classical Poincaré distance p and
B(τ) is the Bloch space B. It is well known that the Poincaré distance p is
identical to the induced distance d for B (see [9]).

The following result shows that the functions in B(τ) are Lipschitz as map-
ping from D with distances pτ or dτ to C with the Euclidean distance.

Theorem 1.1. Let τ ∈ L. Let f be an analytic function on D. Then

‖f‖B(τ) = ‖f‖pτ = ‖f‖dτ .
Given z ∈ D and ρ > 0, we write

D(z, ρ) = {w ∈ D : |w − z| < ρ}
for the Euclidean disc centered at z with radius ρ.

For a continuous function f on D, we define a function ωρτ (f)(z) on D by

ωρτ (f)(z) = sup{|f(z)− f(w)| : w ∈ D(z, ρτ(z))}.
ωρτ (f)(z) is called the oscillation of f at z in the metric dsτ . We say that a
continuous function f on D has bounded oscillation in the metric dsτ if the
function ωρτ (f)(z) is bounded in D. We define

BOρτ = {f ∈ C(D) : ‖f‖BOρτ < +∞},
where

‖f‖BOρτ = sup{ωρτ (f)(z) : z ∈ D}.

Given a function f ∈ L1(D, dA), we define an averaging function f̂ρ(z) on D
as follows:

f̂ρ(z) =
1

|D(z, ρτ(z))|

∫
D(z,ρτ(z))

f(w) dA(w), z ∈ D.
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We define the mean oscillation of f at z in the metric dsτ to be

MOρτ (f)(z) =

(
1

|D(z, ρτ(z))|

∫
D(z,ρτ(z))

|f(w)− f̂r(z)|2 dA(w)

)1/2

.

We say that a function f has bounded mean oscillation in the metric dsτ if
MOρτ (f) is bounded in D. We shall let BMOρτ denote the space of functions on
D with bounded mean oscillation in the metric dsτ . Let

‖f‖BMOρτ = sup{MOρτ (f)(z) : z ∈ D}.

Theorem 1.2. Let τ ∈ L. Let ρ > 0 and f be an analytic function on D. Then

‖f‖B(τ) ≈ ‖f‖BMOρτ ≈ ‖f‖BOρτ .

We note that the above results are well-known for the case τ(z) = 1 − |z|2
(see [9]).

Definition 2 (Class L∗). Let ϕ ∈ C2(D) be a radial function such that ∆ϕ(z) ≥
Cϕ > 0 for some positive constant Cϕ depending only on the function ϕ. We
say ϕ ∈ L∗ (see [1] and [6]) if the function

τϕ(ρ) = (∆ϕ(ρ))−
1
2 , 0 ≤ ρ < 1,

decreases to 0 as ρ = |z| → 1−, τ ′ϕ(ρ) → 0 as ρ → 1−, and moreover, either

there exists a constant C > 0 such that τϕ(ρ)(1− ρ)−C increases for ρ close to
1 or limρ→1− τ

′
ϕ(ρ) log 1

τϕ(ρ)
= 0.

We know that if ϕ ∈ L∗, then τϕ ∈ L. Several examples are given in [6].
The weighted Bergman space A2

ϕ is the space of analytic functions f such
that

‖f‖22,ϕ =

∫
D
|f(z)|2e−2ϕ(z) dA(z) < +∞.

Since the space A2
ϕ is a reproducing kernel Hilbert space, for each z ∈ D, there

are functions Kz ∈ A2
ϕ with f(z) = 〈f,Kz〉ϕ, where 〈·, ·〉ϕ is the usual inner

product in L2
ϕ. The reproducing kernel

Kϕ(w, z) = Kz(w), z, w ∈ D,

is called the Bergman kernel for A2
ϕ.

The Bergman metric on D associated with ϕ is given by

Bϕ(z)dzdz̄ =
∂2

∂z∂z̄
logKϕ(z, z)dzdz̄.

The corresponding Bergman distance βϕ is given by

βϕ(z, w) = inf
γ

∫ 1

0

√
Bϕ(γ(t))|γ′(t)| dt,

where γ is a piecewise smooth curve with γ(0) = z and γ(1) = w.
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For an analytic function f and z ∈ D we define

Qϕ(f)(z) =
|f ′(z)|√
Bϕ(z)

.

Definition 3. An analytic function f on D is called a Bloch function associated
with ϕ if

sup{Qϕ(f)(z) : z ∈ D} < +∞.

Theorem 1.3. Let ϕ ∈ L∗. Then

Bϕ(z) ≈ 1

τϕ(z)2
, z ∈ D.

Corollary 1.4. Let ϕ ∈ L∗. There exists a constant C > 0 such that

C−1pτϕ(z, w) ≤ βϕ(z, w) ≤ Cpτϕ(z, w), z, w ∈ D.

Corollary 1.5. Let ϕ ∈ L∗. Let f be a Bloch function associated with ϕ. Then

‖f‖B(τϕ) ≈ sup{Qϕ(f)(z) : z ∈ D}.

Constants. In the rest of the paper we use the same letter C to denote various
positive constants which may change at each occurrence. Variables indicating
the dependency of constants C will be often specified. We use the notation
X . Y or Y & X for nonnegative quantities X and Y to mean X ≤ CY for
some inessential constant C > 0. Similarly, we use the notation X ≈ Y if both
X . Y and Y . X hold.

2. A Hermitian metric

A Hermitian metric dsτ on D associated with τ ∈ L is a symmetric tensor
represented by

ds2τ =
1

τ(z)2
dzdz̄.

Let h be a smooth function on R such that

1

τ(z)
= h(|z|2).

Then we obtain the Gaussian curvature function is given by

Kτ =
4(|z|2h′2 − |z|2hh′′ − hh′)

h4
.

Setting t = |z|2, we obtain that

Kτ = − 4

h2

(
th′(t)

h

)′
.
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Thus Kτ ≤ 0 if and only if

th′(t)

h
is increasing.

Since g11 = g22 = h2(|z|2), and g12 = g21 = 0, we obtain that the Christoffel
symbols of our metric are given by:

Γ1
11 = Γ2

12 = Γ2
21 =

hx
h
,

Γ2
22 = Γ1

12 = Γ1
21 =

hy
h
,

Γ2
11 = −hx

h
, Γ1

22 = −hy
h
.

The parametric equations for the geodesic curve is here:

ẍ+ 2
xh′

h
ẋ2 + 4

yh′

h
ẋẏ − 2

xh′

h
ẏ2 = 0,

ÿ − 2
yh′

h
ẋ2 + 4

xh′

h
ẋẏ + 2

yh′

h
ẏ2 = 0.

We calculate pτ (0, z). Let (ρ, θ) be geodesic polar coordinates about 0. Then

ds2τ =
1

τ(ρ)2
{

(dρ)2 + ρ2(dθ)2
}
.

Hence

g11 =
1

τ(ρ)2
, g12 = g21 = 0, g22 =

ρ2

τ(ρ)2
.

This means that it is a Clairaut parametrization and the ρ-parameter curves
are geodesics. Thus the segment γ(t) = t|z| is the geodesic joining 0 and |z|.
As the metric is a rotation invariant, it follows that

pτ (0, z) = pτ (0, |z|) =

∫ |z|
0

1

τ(t)
dt.

Example 1. We define for α ≥ 1

τα(z) = (1− |z|2)α, z ∈ D.
Then τα ∈ L and the metric

ds2α =
1

τα(z)2
dzdz̄.

is called the weighted Poincaré metric (see [7]). Then

hα(t) =
1

(1− t)α

and the Gaussian curvature function is given by

Kα = −4α(1− |z|2)2(α−1) < 0.
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If α = 1, it is the Poincaré metric and the curvature is −4.
Even though we could not solve the geodesic equations by the explicit formula,

in (Figure 1) we get the picture of geodesics by using the numerical method.

Α=1

Α=3

Α=10

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1. Geodesics through (−0.5,−0.5) and (0.5,−0.5)
(We use the NDSolve command in the Mathematica program to show the

solutions of the geodesic equations for α = 1, 3, or 10.)

Let (ρ, θ) be geodesic polar coordinates about 0. Then

ds2α =
1

(1− ρ2)2α
{

(dρ)2 + ρ2(dθ)2
}
.

Hence

g11 =
1

(1− ρ2)2α
, g12 = g21 = 0, g22 =

ρ2

(1− ρ2)2α
.

Hence it is a Clairaut parametrization and the ρ-parameter curves are geodesics.
Let pα(z, w) be the weighted Poincaré distance induced by the weighted Poincaré

metric. Then

pα(0, z) =

∫ |z|
0

1

(1− t2)α
dt

= |z| 2F1

[
1

2
, α;

3

2
; |z|2

]
.

When α = 2, then

p2(0, z) =
1

2

[
|z|

1− |z|2
+ tanh−1(|z|)

]
.

Here F (a, b; c|z) is the hypergeometric function given by

F (a, b; c|z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−a dt, |z| < 1,

where Γ is the Gamma function and a ∈ R, c > b > 0.
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3. Preliminaries

In this section we let τ ∈ L. The following notations will be frequently used:

mτ =
1

4
min

{
1,

1

A
,

1

B

}
,

where A and B are the constants in the conditions (a) and (b) in Definition 1.

Lemma 3.1. Let 0 < ρ ≤ mτ and w ∈ D. Then,

3

4
τ(w) ≤ τ(z) ≤ 5

4
τ(w), z ∈ D(w, ρτ(w)).

Proof. Let z ∈ D(w, ρτ(w)). By the conditon (b) in Definition 1, we have

τ(w) ≤ τ(z) +B|z − w| ≤ τ(z) +Bρτ(w) ≤ τ(z) +
1

4
τ(w).

Therefore

3

4
τ(w) ≤ τ(z), z ∈ D(w, ρτ(w)).

Similarly, it can be proved that

τ(z) ≤ 5

4
τ(w), z ∈ D(w, ρτ(w)).

�

As a consequence of Lemma 3.1 we have

Corollary 3.2. Let 0 < ρ1, ρ2 ≤ mτ and z, w ∈ D. If D(z, ρ1τ(z))∩D(w, ρ2τ(w)) 6=
∅. then τ(z) ∼ τ(w).

Corollary 3.3. Let 0 < 8
3ρ ≤ mτ and z ∈ D(z0, ρτ(z0)). Then D(z0, ρτ(z0)) ⊂

D(z, 83ρτ(z)).

Lemma 3.4. Let f be an analytic function in D. Then

|f ′(z)| ≤ 1

2π

3

(ρτ(z))3

∫
D(z,ρτ(z))

|f(w)| dA(w).

Proof. By the Cauchy integral formula, it follows that

f ′(z) =
1

2πi

∫
|z−ζ|=r

f(ζ)

(ζ − z)2
dζ

=
1

2π

∫ 2π

0

f(z + reiθ)

reiθ
dθ.

Hence

|f ′(z)|
∫ ρτ(z)

0

r2 dr ≤ 1

2π

∫ 2π

0

∫ ρτ(z)

0

|f(z + reiθ)|r drdθ
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or

|f ′(z)| ≤ 1

2π

3

(ρτ(z))3

∫
D(z,ρτ(z))

|f(w)| dA(w).

�

4. Geometric characterizations of the τ-Bloch space

We recall that the τ -Bloch space B(τ) is defined by

B(τ) = {f ∈ H(D) : ‖f‖B(τ) < +∞},
where

‖f‖B(τ) = sup{τ(z)|f ′(z)| : z ∈ D}
and the induced distance dτ (see [7] and [8]) is defined by

dτ (z, w) = sup{|f(z)− f(w)| : ‖f‖B(τ) ≤ 1}.

Lemma 4.1. Let τ ∈ L. Then

lim sup
w→z

dτ (z, w)

|z − w|
≤ 1

τ(z)
.

Proof. For w ∈ D with z 6= w we have

|f(z)− f(w)| ≤ |z − w|
∫ 1

0

|f ′(tz + (1− t)w)|dt

≤ |z − w|
∫ 1

0

1

τ(tz + (1− t)w)
dt

for all f ∈ B(τ) with ‖f‖B(τ) ≤ 1. Taking the supremum over all such f , we get

dτ (z, w)

|z − w|
≤
∫ 1

0

1

τ(tz + (1− t)w)
dt.

Since 1
τ is uniformly continuous on a neighborhood of z, we have

lim sup
w→z

dτ (z, w)

|z − w|
≤ lim
w→z

∫ 1

0

1

τ(tz + (1− t)w)
dt =

1

τ(z)
.

�

We recall that BOρτ denotes the space of continuous functions on D with
bounded oscillation with the semi-norm

‖f‖BOρτ = sup{ωρτ (f)(z) : z ∈ D}.

Example 2. Let z = |z|eiθ and w ∈ D(z, ρτ(z)). Then teiθ ∈ D(z, ρτ(z)) for
any t between |z| and |w|. Since τ(t) = τ(teiθ) ≈ τ(z), it follows that

|pτ (0, z)− pτ (0, w)| =

∣∣∣∣∣
∫ |w|
|z|

1

τ(t)
dt

∣∣∣∣∣ . |w − z|τ(z)
≤ ρ.

Hence pτ (0, ·) ∈ BOρτ .



THE BERGMAN METRIC AND RELATED BLOCH SPACES 27

Theorem 4.2. Let τ ∈ L. Let f be an analytic function on D. Then

‖f‖B(τ) = ‖f‖pτ = ‖f‖dτ
and

‖f‖B(τ) ≈ ‖f‖BMOρτ ≈ ‖f‖BOρτ .

Proof. Suppose that there exists a constant C > 0 such that

|f(z)− f(w)| ≤ Cpτ (z, w), z, w ∈ D.

Fix z in D and let γ(s) be the geodesic parametrized by are-length such that
γ(0) = z. Since pτ (γ(0), γ(s)) = s, we have

|f(γ(0))− f(γ(s))| ≤ Cs.

This means that |f ′(z)||γ′(0)| ≤ C. Now

1 =
1

s
pτ (γ(0), γ(s)) =

1

s

∫ s

0

|γ′(t)|
τ(γ(t))

dt.

Thus we have τ(z) = |γ′(0)|. Hence τ(z)|f ′(z)| ≤ C. This means that ‖f‖B(τ) ≤
‖f‖pτ .

Let f ∈ B(τ). For z, w ∈ D let γ be the geodesic in D such that γ(0) = z and
γ(1) = w. Then

|f(z)− f(w)| ≤
∫ 1

0

|f ′(γ(t)||γ′(t)| dt

≤ ‖f‖B(τ)
∫ 1

0

|γ′(t)|
τ(γ(t))

dt = pτ (z, w)‖f‖B(τ).

Hence we have ‖f‖pτ ≤ ‖f‖B(τ).
Let f ∈ B(τ). Take F = f/‖f‖B(τ). Then ‖F‖B(τ) = 1. By the definition of

dτ we have

|F (z)− F (w)| ≤ dτ (z, w)

or

|f(z)− f(w)| ≤ ‖f‖B(τ)dτ (z, w).

Hence it follows that ‖f‖dτ ≤ ‖f‖B(τ).
Suppose that there exists a constant C > 0 such that

|f(z)− f(w)| ≤ Cdτ (z, w), z, w ∈ D.

By Lemma 4.1, we have

|f ′(z)| = lim sup
w→z

|f(z)− f(w)|
|z − w|

= lim sup
w→z

|f(z)− f(w)|
dτ (z, w)

dτ (z, w)

|z − w|
≤ C 1

τ(z)
.

This means that ‖f‖B(τ) ≤ ‖f‖dτ . Consequently, we have‖f‖B(τ) = ‖f‖pτ =
‖f‖dτ .
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Note that

|̂f |2ρ(z)− |f̂ρ(z)|2

=
1

2|D(z, ρτ(z))|2

∫
D(z,ρτ(z))

∫
D(z,ρτ(z))

|f(w)− f(ζ)|2 dA(w)dA(ζ).

Hence we have

MOρτ (f)(z) ≤

(
1

|D(z, ρτ(z))|

∫
D(z,ρτ(z))

|f(w)− f(z)|2 dA(w)

)1/2

≤ ωρτ (f)(z).

By the sub-mean value property and Hölder’s inequality, we have

|f(w)| .

(
1

|D(w, ρτ(w))|

∫
D(w,ρτ(w))

|f(ζ)|2 dA(ζ)

)1/2

.

Replace f by f − f(z), then

|f(z)− f(w)| .

(
1

D(w, ρτ(w))

∫
D(w,ρτ(w))

|f(z)− f(ζ)|2 dA(ζ)

)1/2

for analytic function f and z, w ∈ D. If w ∈ D(z, ρτ(z)), then D(w, ρτ(w)) ⊂
D(z, 3ρτ(z)). Thus

|f(z)− f(w)| .

(
1

|D(w, ρτ(w))|

∫
D(w,ρτ(w))

|f(z)− f(ζ)|2 dA(ζ)

)1/2

.

(
1

τ(z)2

∫
D(z,3ρτ(z))

|f(z)− f(ζ)|2 dA(ζ)

)1/2

.

Now for ζ ∈ D(z, 3ρτ(z)) we have

|f(z)− f(ζ)| ≤ |ζ − z|
∫ 1

0

|f ′(z + t(ζ − z))| dt

≤ |ζ − z|‖f‖B(τ)
∫ 1

0

1

τ(z + t(ζ − z))
dt

≈ |ζ − z|
τ(z)

‖f‖B(τ).
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Hence

|f(z)− f(w)| .

(
1

τ(z)2

∫
D(z,3ρτ(z))

|f(z)− f(ζ)|2 dA(ζ)

)1/2

.

(
‖f‖2B(τ)
τ(z)4

∫
D(z,3ρτ(z))

|ζ − z|2 dA(ζ)

)1/2

. ‖f‖B(τ)

or

ωρτ (f)(z) . ‖f‖B(τ).

Thus

MOρτ (f)(z) ≤ ωρτ (f)(z) . ‖f‖B(τ).

By Lemma 3.4 and Hölder’s inequality, we have

|f ′(z)| . 1

τ(z)2

(∫
D(z,ρτ(z))

|f(w)|2 dA(w)

)1/2

for an analytic function in D. Replace f by f − f̂ρ(z). Then

|f ′(z)| . 1

τ(z)2

(∫
D(z,ρτ(z))

|f(w)− f̂ρ(z)|2 dA(w)

)1/2

.

Thus

τ(z)|f ′(z)| .

(
1

|D(z, ρτ(z))|

∫
D(z,ρτ(z))

|f(w)− f̂ρ(z)|2 dA(w)

)1/2

= MOρτ (f)(z).

Hence we have ‖f‖B(τ) ≈ ‖f‖BMOρτ ≈ ‖f‖BOρτ . �

5. Estimates for the Bergman metric

We have the following family of analytic peak functions with precise growth
conditions. The result was proved in ([2], [6]).

Lemma 5.1. Let ϕ ∈ L∗ and τϕ = (∆ϕ)−
1
2 . Let ρ ∈ (0,mτϕ ] and n ∈ N \ {0}.

Let δ > 0 be sufficiently close to 1. Given z ∈ D with δ ≤ |z| < 1, there exists a
function Fz ∈ H(D) such that

(a) |Fz(w)| ≈ eϕ(w), w ∈ D(z, ρτϕ);

(b) |Fz(w)| . eϕ(w)min
[
1,

min{τϕ(z),τϕ(w)}
|z−w|

]3n
, w ∈ D.
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For ϕ ∈ L∗ and under the additional condition: there are constants ρ > 0
and 0 < t < 1 such that

τϕ(w) ≤ τϕ(z) + t|z − w| for w /∈ D(z, ρτ(z)),

Lin and Rochberg [4] constructed a family of analytic peak functions with the
growth condition (a) in Lemma 5.1.

The weighted Bergman space A2
ϕ is the space of functions f ∈ H(D) such

that

‖f‖22,ϕ =

∫
D
|f(z)|2e−2ϕ(z) dA(z) < +∞.

Corollary 5.2 ([2], [6]). Let δ > 0 be sufficiently close to 1.

(a) ‖Fz‖22,ϕ ≈ τϕ(z)2, |z| ≥ δ.
(b) K(z, z) ≈ e2ϕ(z)

τϕ(z)2
, |z| ≥ δ.

Lemma 5.3. [5] Let f ∈ H(D) with f(z) = 0. Then

|f ′(z)|2e−2ϕ(z) . 1

τϕ(z)4

∫
D(z,ρτϕ(z))

|f(w)|2e−2ϕ(w) dA(w).

We recall that

Bϕ(z) =
∂2

∂z∂z̄
logKϕ(z, z),

where Kϕ(w, z) is the Bergman kernel for A2
ϕ. It is well-known that (see [3])

Bϕ(z) =
1

Kϕ(z, z)
sup{|f ′(z)|2 : f ∈ A2

ϕ, ‖f‖2,ϕ = 1, f(z) = 0}.

Theorem 5.4. Let ϕ ∈ L∗. Then

Bϕ(z) ≈ 1

τϕ(z)2
, z ∈ D.

Proof. By Lemma 5.3 and Corollary 5.2 (b), we have

Bϕ(z) .
1

τϕ(z)2
.

For the converse inequality, we take

fz(w) =
w − z
τϕ(z)2

Fz(w),

where Fz is the peak function constructed in Lemma 5.1. Then

‖fz‖22,ϕ =
1

τϕ(z)4

∫
D
|w − z|2|Fz(w)|2e−2ϕ(w) dA(w).

Let ρ ∈ (0,mτϕ ] and δ ≤ |z| < 1. Let

I(z) =

∫
D(z,ρτϕ(z))

|w − z|2|Fz(w)|2e−2ϕ(w) dA(w)
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and

J(z) =

∫
D\D(z,ρτϕ(z))

|w − z|2|Fz(w)|2e−2ϕ(w) dA(w).

By Corollary 5.2, we have

I(z) . τϕ(z)2‖Fz‖22,ϕ . τϕ(z)4.

On the other hand, by Lemma 5.1 with n = 2, we have

J(z) . τϕ(z)6
∫
D\D(z,ρτϕ(z))

dA(w)

|w − z|4

. τϕ(z)6
∫ 1

ρτϕ(z)

dr

r3
. τϕ(z)4.

Thus fz ∈ A2
ϕ and ‖fz‖22,ϕ . 1. We take

gz(ζ) =
fz(ζ)

‖fz‖2,ϕ
.

Then gz ∈ A2
ϕ, ‖g‖2,ϕ = 1, and

|g′z(z)|2 ≈ |f ′z(z)|2 ≈
|Fz(z)|2

τϕ(z)4
≈ e2ϕ(z)

τϕ(z)4
≈ Kϕ(z, z)

τϕ(z)2
.

Hence it follows that

Bϕ(z) ≥ |g
′
z(z)|2

Kϕ(z, z)
&

1

τϕ(z)2
for |z| ≥ δ.

Now if we choose

gz(w) =
w − z

‖w − z‖2,ϕ
.

Then gz ∈ A2
ϕ, ‖gz‖2,ϕ = 1 and gz(z) = 0. Now we have

|g′z(z)|2 =
1

‖w − z‖22,ϕ
≥ 1

(1 + δ)2‖1‖22,ϕ
, |z| ≤ δ

and

Kϕ(z, z) ≤ C, |z| ≤ δ,

for some constant C > 0. Hence

Bϕ(z) ≥ 1

C(1 + δ)2‖1‖22,ϕ
, |z| ≤ δ.

Since τϕ ∈ C(D) with τϕ(z) 6= 0, z ∈ D, it follows that 1
τϕ
∈ C(D). Thus

1

τϕ(z)2
≤ C ′, |z| ≤ δ,
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for some constant C ′ > 0. Thus

Bϕ(z) &
1

τϕ(z)2
for |z| ≤ δ, .

Thus we get the result. �
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