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ON THE TOUCHARD POLYNOMIALS AND

MULTIPLICATIVE PLANE PARTITIONS

JunKyo Kim

Abstract. For a positive integer n, let µd(n) be the number of multiplica-

tive d-dimensional partitions of
n∏

i=1
pi, where pi denotes the ith prime. The

number of multiplicative partitions of a square free number with n prime

factors is the Bell number µ1(n) = Bn. By the definition of the function
µd(n), it can be seen that for all positive integers n, µ1(n) = Tn(1) = Bn,

where Tn(x) is the nth Touchard (or exponential ) polynomial. We show

that, for a positive n, µ2(n) = 2nTn(1/2). We also conjecture that for all
m, µ3(m) ≤ 3mTm(1/3).

1. Introduction and Notation

A partition of a set S is a collection of disjoint subsets of S whose union is S.
For example, one possible partition of {1, 2, 3, 4, 5, 6} is {{1, 3}, {2}, {4, 5, 6}}.
The nth Bell number Bn, named after Eric Temple Bell (see [3]), is the number
of partitions of a set with n members. Let pi be the ith prime (i.e., p1 = 2,
p2 = 3, etc.). Then, the Bell number Bn is equal to the number of multiplicative

one-dimensional partitions of
n∏
i=1

pi (see [5]). The Bell numbers Bk for k ≥ 0

can be generated by

ee
x−1 =

∞∑
n=0

Bn
n!
xn

and the first eight Bell numbers are 1, 1, 2, 5, 15, 52, 203, 877. The Touchard poly-
nomials Tn(x)’s (also known as Bell polynomials or exponential polynomials)
can be defined by the Stirling transform

Tn(x) =

n∑
k=0

{n
k

}
xk,
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where
{
n
k

}
denotes the Stirling number of the second kind or can be defined by

the exponential generating function

ex(e
t−1) =

∞∑
n=0

Tn(x)

n!
tn.

Since Tn(1) = Bn, the Touchard polynomials Tn(x) are generalizations of the
Bell numbers Bn for n ≥ 0. Let µd(m) denote the number of multiplicative

d-dimensional partitions of integer
m∏
i=1

pi. Since µ1(n) = Bn, µd(n) are also

generalizations of the Bell numbers.
In Section 2, we give some background on Young tableaux to prove that

µ2(n) =

n∑
k=1

Y (k)
{n
k

}
,

where Y (k) is the number of standard Young tableaux with k cells.
In Section 3, we study the function µ2(n) and we show that, for a positive n,

µ2(n) = 2nTn(1/2). Thus, we extend the result of µ1(n) = Tn(1) to the case of

µk(n) = knTn(1/k),

where k = 1, 2.
Finally, in Section 4, we estimate the number of multiplicative solid partitions

of
m∏
i=1

pi. Examining the multiplicative solid partition function for small values

of m leads one to conjecture that for all m, µ3(m) ≤ 3mBm(1/3).

2. Standard Young Tableaux

A multiplicative plane (or two-dimensional) partition is a decomposition of a
set into a product of relatively small positive integers, which are arranged on a
plane. The ordering property generalizes to the products being non-increasing
along both rows and columns. For example,the multiplicative plane partition
77(0,0) · 65(1,0) · 23(2,0) · 19(0,1) · 17(1,1) · 6(0,2) is represented as

6
19 17
77 65 23 .

Generalization to a d-dimensional partition is straightforward. The multiplica-
tive d-dimensional partition of a positive integer n is an array whose multipli-
cation is

n =
∏

i1,.,id>0

ni1i2···id ,

where ni1i2···id are positive integers satisfying ni1i2···id > nj1j2···jd if i1 ≤ j1, i2 ≤
j2, ..., id ≤ jd (see [1, p.179]).

Young tableaux are ubiquitous combinatorial objects that have made impor-
tant and inspiring appearances in representation theory, geometry and algebra
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(see, for example [4], [12], and [13]). First we need to define some notations and
conventions regarding partitions and Young diagrams. A partition of a posi-
tive integer n is a sequence of positive integers λ = (λ1, λ2, . . . , λk) satisfying
λ1 ≥ λ2 ≥ . . . ≥ λk > 0 and n = λ1 + λ2 + ... + λk. Similarly, a multiplicative
partition of an integer n that is greater than 1 is a sequence of positive integers
λ = (λ1, λ2, . . . , λk) satisfying λ1 ≥ λ2 ≥ . . . ≥ λk > 1 and n = λ1 · λ2 · ... · λk.
We write λ ` n to denote that λ is a partition of n and λ′ `∗ n to denote that
λ′ is a multiplicative partition of n. By convention, we let P (n) denote the
number of partitions of n. For example, it is easy to see that P (4) = 5 since
the partitions of 4 are

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

Partitions can be graphically visualized with Young diagrams. A Young diagram
is a finite collection of cells arranged in left-justified rows, with the row lengths
weakly decreasing. Listing the number of boxes in each row gives a partition
λ of a non-negative integer n, the total number of boxes in the diagram. In
this study, Young diagrams will be drawn using the French notation with the
longest row on the bottom and will be identified with the partition itself by
considering a partition as a collection of cells. For example, the Young diagrams
corresponding to the partitions of 4 are

.

(4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)

Since there is a clear one-to-one correspondence between partitions and Young
diagrams, we use the two terms interchangeably, and we will use the Greek let-
ter λ to denote them. A Young filling of λ assigns a positive integer to each box
of λ, e.g.,

3 4
2 2 3 6
1 3 3 4 8

.

A set of Young tableaux has n distinct entries, arbitrarily assigned to cells in
the Young filling. A tableau is considered standard if the entries in each row
and each column show an increasing trend and if it is a bijective assignment of
{1, 2, ..., n}. A standard tableau filling of shape λ is a labeling of the cells of the
standard Young diagram of λ with the numbers 1 to n. We denote the number
of standard tableaux of shape λ by fλ. For example, f (3,2) = 5 since there are
5 standard tableaux of shape (3, 2):

4 5
1 2 3

3 5
1 2 4

3 4
1 2 5

2 4
1 3 5

2 5
1 3 4

.

The hook length of a cell c = (i, j) ∈ λ is the number of cells weakly above and
strictly to the right of c, i.e., the number of boxes directly to the right or above
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c (including c itself). We denote this by hλ(c). The Frame-Robinson-Thrall
hook-length formula states that if λ ` n, then the number of standard Young
tableaux of shape λ is

fλ =
n!∏

c∈λ hλ(c)
.

If λ = (3, 2) ` 5 then the hook lengths of λ are given in the diagram

λ = (3, 2) :
2 1
4 3 1

.

Thus, for example,

f (3,2) =
5!

2 · 1 · 4 · 3 · 1
= 5,

which agrees with our previous computation.
For a positive integer n, let Y (n) be the number of standard Young tableaux

with n cells. This say that Y (n) =
∑
λ`n

fλ. For example, Y (3) = f (3) + f (2,1) +

f (1,1,1) = 4 since there are four standard Young tableaux:

3
2
1

3
1 2

2
1 3

1 2 3 .

The number of standard Young tableaux of size 1, 2, 3, ... are

1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, ...

The Robinson-Schensted-Knuth correspondence proves the fact that the number
of standard Young tableaux of {1, 2, ..., n} is equal to the number of involutions
of order n (see [6] and [7]).

Lemma 2.1 (see [9, p. 324]). Y (n) is equal to the number of involutions. These
numbers can be generated by the recurrence relation

Y (n) = Y (n− 1) + (n− 1)Y (n− 2)

with Y (1) = 1 and Y (2) = 2.

By convention, let µ2(0) = Y (0) = 1 and Y (k) = 0 for k < 0.

3. Touchard Polynomials

Let τ = (τi1 , . . . , τik) be a multiplicative plane partition of
n∏
i=1

pi. Since any

two factors of
n∏
i=1

pi are different, the number of the standard Young tableaux

of set {τi1 , . . . , τik} is equal to Y (k). There are five multiplicative partitions
with product 30:

(30) (15, 2) (10, 3) (6, 5) (5, 3, 2),

and there are eleven multiplicative plane partitions with product 30:
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Y (1) = 1 : 30;

Y (2) = 6 : 15 2
2
15

10 3
3
10

6 5
5
6

;

Y (3) = 4 :
2
3
5

2
5 3

3
5 2

5 3 2 .

Lemma 3.1. For a non-negative integer n, we have

µ2(n) =

n∑
k=0

Y (k)
{n
k

}
.

Proof. For a multiplicative partition λ of n with exactly k parts, let ||λ|| = k.
If n = 0, then µ2(0) = Y (0)S(0, 0) = 1 · 1 = 1. Thus, we may assume n ≥ 1.
Because

{
n
k

}
is the number of ways of partitioning a set of n elements into k

non-empty sets, we get

µ2(n) =
∑
λ`∗m

Y (||λ||)

=

n∑
k=1

∑
λ`∗m
||λ||=k

Y (k)

=

n∑
k=1

Y (k) · (
∑
λ`∗m
||λ||=k

1)

=

n∑
k=1

Y (k)
{n
k

}
=

n∑
k=0

Y (k)
{n
k

}
.

�

The following lemma deals with the exponential generating function of a
sequence

{
n
k

}
.

Lemma 3.2 (see [10, Theorem 13.6]). Let k be a non-negative integer. The
exponential generating function of a sequence

{
n
k

}
is

∞∑
n=k

{n
k

}xn
n!

=
1

k!
(ex − 1)k.

Exponential generating functions are particularly useful when building ob-
jects from an underlying set (the label set).

The following two lemmas show that the sequences µ2(n) and 2nBn(1/2)
have the same exponential generating function.
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Lemma 3.3. The exponential generating function of a sequence µ2(n) is

Φ(x) =

∞∑
m=0

µ2(m)
xm

m!
= e(e

2x−1)/2.

Proof. By Lemmas 3.1 and 3.2,

Φ(x) =

∞∑
m=0

µ2(m)
xm

m!

=

∞∑
m=0

1

m!

m∑
k=0

S(m, k)Y (k)xm

=

∞∑
k=0

Y (k)

∞∑
m=k

S(m, k)
xm

m!

=

∞∑
k=0

Y (k)
(ex − 1)k

k!
.

If we differentiate both sides with respect to x, then from Lemma 2.1, we get

d

dx
Φ(x) =

∞∑
k=1

Y (k)
ex(ex − 1)k−1

(k − 1)!

=

∞∑
k=1

(Y (k − 1) + (k − 1)Y (k − 2))
ex(ex − 1)k−1

(k − 1)!

=

( ∞∑
`=1

Y (`− 1)
ex(ex − 1)`−1

(`− 1)!

)
+

( ∞∑
k=2

(k − 1)Y (k − 2)
ex(ex − 1)k−1

(k − 1)!

)

= exΦ(x) +

∞∑
k=2

Y (k − 2)
ex(ex − 1)k−1

(k − 2)!

= exΦ(x) + ex(ex − 1)Φ(x)

= e2xΦ(x).

Therefore, Φ(x) = e(e
2x)/2µ2(0)

e1/2
= e(e

2x−1)/2. �

The generating function of the Bell numbers (see [11]) is
∞∑
n=0

Bn(1)

n!
tn = e(e

t−1).

Similarly, we have

Lemma 3.4. Let c be a positive real number. The exponential generating func-
tion of a sequence cnBn(1/c) is

∞∑
m=0

cm
Bm(1/c)

m!
xm = e(e

cx−1)/c.
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Proof. By Lemma 3.2,

∞∑
m=0

cmBn(1/c)
xm

m!
=

∞∑
m=0

(cx)m

m!

m∑
k=0

S(m, k)

(
1

c

)k
=

∞∑
k=0

1

ck

∞∑
m=k

S(m, k)
(cx)

m

m!

=
∞∑
k=0

1

cx
(ecx − 1)

k 1

k!

=

∞∑
k=0

(
ecx − 1

c

)k
1

k!

= e(e
cx−1)/c.

�

From Lemmas 3.3 and 3.4, we derive the following theorem.

Theorem 3.5. If m is a non-negative integer, then

µ2(m) = 2mBm

(
1

2

)
.

4. Concluding Remarks

In this section, we first describe how the values displayed in Table 1 are
determined. A solid standard Young tableaux (SSYT) with n cells is a way of
arranging the integers 1 through n as a three-dimensional Young diagram of a
plane partition, with the entries increasing from left to right, back to front, and
bottom to top. Recently, Ekhad and Zeilberger (see [8]), who first introduced
SSYTs with n cells, investigated the number of SSYTs with n cells. They
obtained the first thirty terms of the SSYTs with n cells. The first five terms of
SSYT were found to be 1, 3, 9, 33, 135. Similar to Lemma 3.1 one can obtain
µ3(n) =

∑n
k=0 Ŷ (n)

{
n
k

}
, where Ŷ (n) is the number of SSYTs with n cells.

Accordingly, the values in Table 1 are thereby determined.
From Theorem 3.5, we see that for all positive integers n,

µ1(n) = Bn = 1nTn(1/1),

µ2(n) = 2nTn(1/2).

This would initially lead us to believe that comparably interesting discoveries
are awaited for high-dimensional multiplicative partitions. We guess µk(n) =
knBn(1/k) for all positive k. However, Table 1 demonstrates that such hopes
are in vain. Nevertheless, we anticipate that it can still help us deduce the
correct leading asymptotic behavior.

We now state an additional problem.
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We see from the table that µ3(n) ≤ 3nBn(1/3) for n ≤ 13. Does
this condition hold for all positive n > 13?

n µ2(n) µ3(n) 3nBn(1/3)

1 1 1 1
2 3 4 4
3 11 19 19
4 49 109 109
5 257 736 742
6 1539 5707 5815
7 10299 49849 51193
8 75905 482722 498118
9 609441 5115169 5296321

10 5284451 58704493 60987817
11 49134923 723833920 754940848
12 487026929 9528008713 9983845261
13 5120905441 133208376217 140329768789

Table 1. µ2(n), µ3(n), and 3nBn(1/3) for 1 ≤ n ≤ 13
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