DOI QR코드

DOI QR Code

A Study on Protection Coordination Algorithm for Separating Fault Section in LVDC Distribution System

LVDC 배전계통에 있어서 사고구간분리 보호협조 알고리즘에 관한 연구

  • Kang, Min-Kwan (Department of Electrical Engineering, Korea University of Technology and Education) ;
  • Lee, Hu-Dong (Department of Electrical Engineering, Korea University of Technology and Education) ;
  • Tae, Dong-Hyun (Department of Electrical Engineering, Korea University of Technology and Education) ;
  • Rho, Dae-Seok (Department of Electrical Engineering, Korea University of Technology and Education)
  • 강민관 (한국기술교육대학교 전기공학과) ;
  • 이후동 (한국기술교육대학교 전기공학과) ;
  • 태동현 (한국기술교육대학교 전기공학과) ;
  • 노대석 (한국기술교육대학교 전기공학과)
  • Received : 2020.10.14
  • Accepted : 2021.01.08
  • Published : 2021.01.31

Abstract

Current protection-coordination methods use the reverse time characteristics of the T-C curve, which is not effective for a LVDC distribution system because the protective operation time of converters and DC circuit breakers is much faster than AC protection devices. Therefore, an algorithm is proposed for fault-section isolation using the fault current slope to minimize the blackout region and coordinate between converters and protection devices in a rapid and accurate manner. The method deals with the slope characteristics of a fault current, which may depend on the fault location in an LVDC distribution system. Thus, an LVDC distribution system can be operated in a stable manner by isolating the fault section selectively before the shutdown of the main converter using slope characteristics, which change in proportion to the line impedance and fault location. A 1.5-kV LVDC distribution system was modeled to verify the effectiveness of the proposed algorithm using PSCAD/EMTDC. The system is composed of a distribution substation, LVDC converter, and distribution lines. The simulation results confirm that the proposed algorithm is a useful tool for minimizing the fault section in an LVDC distribution system.

LVDC 배전계통에서 DC전원의 공급을 위한 컨버터나 DC차단기의 보호동작은 AC 보호기기 보다 훨씬 빠르기 때문에, 기존의 T-C곡선의 반 한시특성에 의한 보호기기간의 보호협조 운용이 어려운 문제점을 가지고 있다. 따라서, 본 논문에서는 LVDC 배전계통에서 사고지점에 따라 다양하게 나타날 수 있는 사고전류의 경사각 개념에 대하여 정의하고, 이를 바탕으로 컨버터와 보호기기간의 협조동작을 신속 정확하게 수행하고, 정전구간의 범위를 최소화할 수 있는 LVDC 배전계통의 사고구간분리 보호협조 알고리즘을 제안한다. 즉, LVDC 배전계통에서의 사고전류가 선로정수에 의해 사고지점에 따라 비례적으로 변하는 경사각의 특성을 이용하여 메인 컨버터가 탈락되기 전에 사고구간을 선택적으로 분리하도록 한다. 또한, 본 논문에서는 배전계통 상용해석 프로그램인 PSCAD/EMTDC를 이용하여 배전용 변전소, LVDC용 컨버터 그리고 LVDC 배전선로로 구성된 1.5kV급 LVDC 배전계통 모델링을 수행한다. 이를 바탕으로 사고지점에 따른 경사각 특성 및 보호협조 운용알고리즘을 분석한 결과, 메인 컨버터가 탈락하기 전 사고구간만을 2ms 이내에 분리하고 건전구간의 수용가에 미치는 영향을 최소화 할 수 있어, 본 논문에서 제안한 사고구간분리 보호협조 운용 알고리즘이 유용함을 확인하였다.

Keywords

References

  1. Ho-hyun Yoon, Young-jae Lee, Myong-chul Shin, "Analysis of Problem According to Frequency Change when Power System Interconnected with Distributed Generation using PSCAD/EMTDC," The Korean Institute of Electrical Engineers, pp.251-252, 2009.
  2. Jun-ho Lee, Hee-Dae Jung, Joo-min Lee, Ju-yong Kim, Jin-tae Cho, "DC distribution development status and plan of KEPCO for introduction of high-efficiency distribution networks in the future", The Korean Institute of Electrical Engineers, pp.313-314, 2016.
  3. Sang-Ick Lee, Dong-Woo Kim, Jae-Hyun Kim, Young-Bae Lim, Dae-Cheul Kang, "Design of Low-voltage DC Breaker for DC Circuit Protection", The Korean Institute of Electrical Engineers, pp.192-193, 2013.
  4. Young-Bae Cho, Hyeong-Jun Yoo, Hak-Man Kim, Yong-Jin Won, "Operating Characteristic Analysis of Hybrid DC Circuit Breaker in VSC-HVDC System", The Korean Institute of Electrical Engineers, pp.351-352, 2013.
  5. T. Nguyen, H. Yoo, and H. Kim, "A comparison study of LVDC and MVAC for deployment of distributed wind generations," in Proc. of 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET), Hanoi, pp.138-141, 2016. DOI: https://doi.org/10.1109/ICSET.2016.7811770
  6. Duck-Su Lee, Jong-Hyun Lee, Seong-Yong Lee, Soo-Nam Kim, "A Study on protection method of LVDC distribution system considering AC/DC converter's fault current supply characteristics", The Korean Institute of Electrical Engineers, pp.2343-2344, 2020.
  7. S. Z. Jamali, S. B. A. Bukhari, M. O. Khan, M. Mehdi, C. H. Noh, G. H. Gwon, and C. H. Kim, "Protection Scheme of a Last Mile Active LVDC Distribution Network with Reclosing Option," Energies, vol. 11, no. 5, 1093, 2018. DOI: https://doi.org/10.3390/en11051093
  8. G. Li, L. Zhang, T. Joseph, J. Liang, and G. Yan, "Comparisons of MVAC and LVDC Systems in Dynamic Operation, Fault Protection and Post-Fault Restoration," IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, pp. 5657-5662, 2019. DOI: https://doi.org/10.1109/IECON.2019.8927251
  9. Soon-hwan Kwon, Hu-dong Lee, Yang-hyun Nam, and Dae-seok Rho, "Optimal Operation Algorithm of Protection Devices in Distribution Systems With PV System," Korea Academy Industrial Cooperation Society, vol. 19, no. 5, pp. 17-26, 2018. DOI: https://doi.org/10.5762/KAIS.2018.19.5.17
  10. J. Yang, J. E. Fletcher, and J. O'Reilly, "Short-Circuit and Ground Fault Analyses and Location in VSC-Based DC Network Cables," in IEEE Transactions on Industrial Electronics, vol. 59, no. 10, pp. 3827-3837, 2012. DOI: https://doi.org/10.1109/TIE.2011.2162712
  11. M. Monadi, C. Koch-Ciobotaru, A. Luna, J. I. Candela, and P. Rodriguez, "Implementation of the differential protection for LVDC distribution systems using real-time simulation and hardware-in-the-loop," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, pp. 3380-3385, 2015. DOI: https://doi.org/10.1109/ECCE.2015.7310137
  12. Yu Zeng, Guibin Zou, Xiuyan Wei, Chenjun Sun, and Lingtong Jiang, "A Novel Protection and Location Scheme for Pole-to-Pole Fault in MMC-LVDC Distribution Grid," Energies. vol. 11, no. 8, 2076, 2018. DOI: https://doi.org/10.3390/en11082076