DOI QR코드

DOI QR Code

Critical Low Temperature and Response of Behavioral Tolerance in Red Seabream Pagrus major fingerlings Exposed to Cold Shock

저온 충격에 노출된 참돔 Pagrus major 치어의 임계 저 수온 및 행동 내성 반응

  • Yoon, Sung Jin (Ulleungdo-Dokdo Ocean Science Station, Korea Institute of Science and Technology)
  • 윤성진 (한국해양과학기술원 울릉도.독도해양연구기지)
  • Received : 2020.08.31
  • Accepted : 2021.01.08
  • Published : 2021.01.31

Abstract

The critical low temperature and response of the behavioral tolerance of red sea bream Pagrus major fingerlings were determined using the continuous behavior monitoring system (CBMS). The behavior of the experimental organisms was observed by decreasing the water temperature by 2.0℃ and 4.0℃ every 12 hours and 24 hours in the range of 8.0-20.0℃. An unstable behavior pattern was observed in red seabream fingerlings exposed to water temperatures below 12.0℃, in which the swimming activity decreased and repeatedly stopped, regardless of the exposure time and water temperature fluctuation. The swimming ability of the organisms exposed to 8.0-10.0℃ decreased sharply, and the behavior of staying at the bottom of the test tank was observed. Only 50 % of the organisms survived due to the low-temperature stress, and all individuals died within six hours after the cold shock. In addition, the behavior index (BI) decreased rapidly, and the amplitude change of the coefficient of variation (CV) was found to have a greater variation than the other water temperatures (p<0.05). Low-temperature stress of red sea bream is promoted at 12.0℃, and it is interpreted as the tolerance limit, which can induce a sublethal response of the organisms exposed to cold shock of 8.0-10.0℃.

본 연구는 연속행동모니터링시스템(CBMS)을 사용하여 저온 충격에 노출된 참돔 Pagrus major 치어의 행동반응에 대한 임계 수온 및 행동 내성 반응을 규명하였다. 실험생물의 행동은 8.0~20.0℃ 수온구간에서 12시간과 24시간 마다 각각 2.0℃와 4.0℃씩 하강시키며 관찰하였다. 참돔 치어는 12.0℃ 이하로 수온이 하강한 경우 수온 노출시간과 변동 폭에 관계없이 유영활동이 감소하고 정지가 반복되는 불안정한 행동패턴이 관찰되었다. 또한 8.0~10.0℃ 수온에 노출된 생물의 유영능력은 급격히 저하되어 수조 바닥에서 머무르는 아치사 반응 행동을 보였다. 실험어류는 저 수온 스트레스 영향을 받아 생물의 50 %만 생존하였으며, 저온 충격(cold shock) 후 6시간 이내에 모든 개체가 사망하였다. 또한 행동지수(BI)는 급격히 감소하였으며 변이계수(CV)의 진폭변화는 타 수온보다 변동 폭이 큰 것으로 분석되었다(p<0.05). 참돔 치어의 저온 스트레스는 12.0℃를 경계로 촉진되며, 8.0~10.0℃의 저온 충격에 노출된 생물의 아치사 반응을 유발시키는 내성한계인 것으로 해석된다.

Keywords

References

  1. T. J. Bowden, "Modulation of the immune system of fish by their environment". Fish & Shellfish Immunology, Vol.25, No.4, pp.373-383, 2008. DOI: http://dx.doi.org/10.1016/j.fsi.2008.03.017
  2. B. Basurco, A. Lovatelli, B. Garcia, "Current status of Sparidae aquaculture", In: M. A. Pavlidis, C. C. Mylonas (eds) Spadidae-biology and aquaculture of gilthead sea bream and other species, Blackwell Publishing, 2011, pp.1-50.
  3. A. M. Azab, M. A. Mousa, N. A. Khalil, H. M. M. Khalaf-Allah, R. T. M. Mabrouk, "Effect of temperature and salinity on larval growth of the gilthead seabream, Sparus aurata" International Journal of Environmental Science and Engineering, Vol.6, pp.35-46, 2005.
  4. D. Debnath, A. K. Pal, N. P. Sahy, K. Baruah, S. Yengkokpam, T. Das, S. Manush, "Thermal tolerance and metabolic activity of yellowtail catfish Pangasius pangasius (Hamilton) advanced fingerlings with emphasis on their culture potential", Aquaculture, Vol.258, No.1-4, pp.606-610, 2006. DOI: http://dx.doi.org/10.1016/j.aquaculture.2006.04.037
  5. M. Kir, M .C. Sunar, B. C. Altindag, "Thermal tolerance and preferred temperature range of juvenile meagre acclimated to four temperature". Journal of Thermal Biology, Vol.65, pp.125-129, 2007. DOI: https://doi.org/10.1016/j.jtherbio.2017.02.018
  6. K. J. Oyen, S. Giri, M. E. Dillon, "Altitudinal variation in bumble bee (Bombus) critical thermal limits", Journal of Thermal Biology, Vol.59, pp.52-57, 2006. DOI: https://doi.org/10.1016/j.jtherbio.2016.04.015
  7. H. K. Hwang, K. I. Park, S. W. Park, M. S. Choi, E. O. Kim, J. W. Do, B. S. Oh, "Physiological response of juvenile red sea bream Pagrus major exposed to low temperature shock", Bulletin of European Association of Fish Pathologists, Vol.32, No.1, pp.34-40, 2002.
  8. L. S. Procarione, T. L. King, "Upper and lower temperature tolerance limits for juvenile red drums from Texas and South California", Journal of Aquatic Animal Health, Vol.5, No.3, pp.208-212, 1993. https://doi.org/10.1577/1548-8667(1993)005<0208:UALTTL>2.3.CO;2
  9. L. Tort, J. Rotllant, C. Liarte, L. Acerete, A. Hernandez, S. Ceulemans, P. Coutteau, F. Padros, "Effect of temperature decrease on feeding rates, immune indicators and histopathological changes of gilthead sea bream Sparus aurata fed with an experimental diet", Aquaculture, Vol.229, No.1-4, pp.55-65, 2004. DOI: https://doi.org/10.1016/S0044-8486(03)00403-4
  10. W. S. Kim, S. J. Yoon, J. M. Kim, J. W. Gil, T. W. Lee, "Effects of temperature changes on the endogenous rhythm of oxygen consumption in the Japanese flounder Paralichthys olivaceus", Fisheries Science, Vol.71, pp.471-478, 2005. DOI: https://doi.org/10.1111/j.1444-2906.2005.00990.x
  11. A. Ibarz, M. Beltran, J. Fernandez-Borras, M. A. Gallardo, J. Sanchez, J. Blasco, "Alteration in lipids metabolism and use of energy depots of gilthead sea bream (Sparus aurata) at low temperature", Aquaculture, Vol.262, No.2-4, pp.470-480, 2007. DOI: https://doi.org/10.1016/j.aquaculture.2006.11.008
  12. M. Remen, "Effect of temperature on the metabolism, behaviour and oxygen requirements of Sparus aurata" Aquaculture Environment Interactions, Vol.7, No.2, pp.115-123, 2015. DOI: https://doi.org/10.3354/aei00141
  13. T. A. Ellis, J. A. Buckel, J. E. Hightower, S. J. Poland, "Relating cold tolerance to winterkill for spotted seatrout at its northern latitudinal limits", Journal of Experimental Marine Biology and Ecology, Vol.490, pp.42-51, 2017. DOI: https://doi.org/10.1016/j.jembe.2017.01.010
  14. Y. K. Shin, Y. D. Kim, W. J. Kim, "Survival and Physiological Responses of Red Sea Bream Pagrus major with Decreasing Sea Water Temperature", Korea Journal of Ichthyology, Vol.30, No.3, pp.131-136, 2018. DOI: https://doi.org/10.35399/ISK.30.3.1
  15. A. M. Gallardo, M. Sala-Rabanal, A. Ibarz, F. Padros, J. Blasco, J. Fernandez-Borras, J. Sanchez, "Functional alterations associated with "winter syndrome" in gilthead sea bream (Sparus aurata)", Aquaculture, Vol.223, No.1-4, pp.15-27, 2003 DOI: https://doi.org/10.1016/S0044-8486(03)00164-9
  16. G. Barnabe, "Rearing bass and gilthead sea bream", In: G. Barnabe (ed) Aquaculture, vol.2, Ellis Horwood, London, pp.647-686, 1990.
  17. J. Forget, J. F. Pavillon, M. R. Menasria, G. Bocquene, "Mortality and LC50 values for several stages of the marine copepod Tigriopus brevicornis (Muller) exposed to the metals arsenic and cadmium and the pesticides atrazine, carbofuran, dichlorvos, and malathion", Ecotoxicology and Environmental Safety, Vol.40, pp.239-244, 1998. DOI: https://doi.org/10.1006/eesa.1998.1686
  18. T. P. Hurst, B. H. Key, P. A. Ryan, M. D. Brown, "Sublethal effects of mosquito lavicides on swimming performance of larviorous fish Melanotaenia duboulayi (Atheriniformes: Melanotaeniidae)", Journal of Economic Entomology, Vol.100, No.1, pp.61-65, 2007. DOI: https://doi.org/10.1093/jee/100.1.61
  19. E. E. Fountoulaki, M. N. Alexis, I. Nengas, "Protein and energy requirements of gilthead bream (Sparus aurata L.) fingerlings: Preliminary results", In: D. Montero, B. Basurco, I. Nengas, M. Alexis, M. Izquierdo (eds). Mediterranean fish nutrition. Zaragoza: CIHEAM, pp.19-26, 2005.
  20. M. K. Sabullah, S. A. Ahmad, M. Y. Shukor, A. J. Gansau, M. A. Syed, M. R. Sulaiman, N. A. Shamaan, "Heavy metal biomaker: Fish behavior, cellular alteration, enzymatic reaction and proteomics approaches", International Food Research Journal, Vol.22, No.2, pp.435-454, 2015. http://www.ifrj.upm.edu.my
  21. W. J. Rowland, "Studying visual cues in fish behavior: a review of ethological techniques", Environmental Biology of Fishes, Vol.56, pp.285-305, 1999. https://doi.org/10.1023/A:1007517720723
  22. S. J. Yoon, C. K. Kim, J. G. Myoung, W. S. Kim, "Comparison of oxygen consumption patterns between wild and cultured black rockfish Sebastes schlegeli", Fisheries Science, Vol.69, No.1, pp.43-49, 2003. DOI: https://doi.org/10.1046/j.1444-2906.2003.00586.x
  23. S. Fukuda, I. J. Kang, J. Moroishi, A. Nakamura, "The application of entropy for detecting behavioral responses in Japanese medaka (Oryzias latipes) exposed to different toxicants", Environmental Toxicology, Vol.25, No.5. pp.446-455, 2010. DOI: https://doi.org/10.1002/tox.20589
  24. J. Chevalier, E. Harscoet, M. Keller, P. Pandard, J. Cachot, M. Grote, "Exploration of Daphina behavioral effect profiles induced by a broad range of toxicants with different modes of action", Environmental Toxicology and Chemistry, Vol.34, No.8, pp.1760-1769, 2015. DOI: https://doi.org/10.1002/etc.2979
  25. R. M. Ross, W. F. Krise, L. A. Redell, M. Bennett, "Effect of dissolved carbon dioxide on the physiology and behavior of fish in artificial streams", Environmental Toxicology, Vol.16, No.1, pp.84-95, 2001. https://doi.org/10.1002/1522-7278(2001)16:1<84::AID-TOX100>3.0.CO;2-1
  26. Z. Ren, J. Zha, M. Ma, Z. Wang, Gerhardt A. "The early warning of aquatic organophosphorus pesticide contamination by on-line monitoring behavioral changes of Daphnia magna" Environmental Monitoring and Assessment, Vol.134, No.1-3, pp.373-383, 2007. DOI: https://doi.org/10.1007/s10661-007-9629-y
  27. B. Niu, G. Li, F. Peng, J. Wu, L. Zhang, Z. Li, "Survey of fish behavior analysis by computer vision", Journal of Aquaculture Research & Development, Vol.9, No.5, pp.1-15, 2018. DOI: https://doi.org/10.4172/2155-9546.1000534
  28. F. Yuan, Y. Huang, X. Chen, E. Cheng, "A Biological sensor system using computer vision for water quality monitoring", IEEE Access, Vol.6, pp.61535-61546, 2018. DOI: https://doi.org/10.1109/ACCESS.2018.2876336
  29. S. J. Yoon, G. S. Park, "Toxicity and behavioral changes of medaka (Oryzias latipes) by brine exposure", Journal of the Korean Society of Oceanography, Vol.16, No.1, pp.39-51, 2011. DOI: https://doi.org/10.7850/jkso.2011.16.1.039
  30. I. S. Kwak, T. S. Chon, H. M. Jang, N. Chung, J. S. Kim,, S. C. Koh, S. K. Lee, Y. S. Kim, "Pattern recognition of the movement tracks of medaka (Oryzias latipes) in response to sub-lethal treatments of an insecticide by using artificial neural networks", Environmental Pollution, Vol.120, pp.671-681, 2002. DOI: https://doi.org/10.1016/S0269-7491(02)00183-5
  31. J. Widdows, A. J. S. Hawkins, "Partitioning of rate of heat dissipation by Mytilus edulis into maintenance, feeding and growth components", Physiological Zoology, Vol.62, pp.764-784, 1989. DOI: https://doi.org/10.1086/physzool.62.3.30157926
  32. W. S. Kim, S. J. Yoon, H. T. Moon, T. W. Lee, "Effects of water temperature changes on the endogenous and exogenous rhythms of oxygen consumption in glass eels Anguilla japonica", Marine Ecology Progress Series, Vol.243, pp.209-216, 2002. DOI: https://doi.org/10.3354/meps243209
  33. W. S. Kim, S. J. Yoon, J. W. Kim, J. A. Lee, T. W. Lee, "Metabolic response under different salinity and temperature conditions for glass eel Anguilla japonica", Marine Biology, Vol.149, pp.1209-1215, 2006. DOI: https://doi.org/10.1007/s00227-006-0293-5
  34. A. Ibarz, F. Padros, M. A. Gallardo, F. FernandezBorras, J. Blasco, L. Tort, "Low-temperature challenges to gilthead sea bream culture: review of cold-induced alterations and 'Winter Syndrome'", Reviews in Fish Biology and Fisheries, Vol.20, pp.539-556, 2010. DOI: https://doi.org/10.1007/S11160-010-9159-5
  35. L. J. Chapman, D. J. McKenzie, DJ, "Behavioural responses and ecological consequences", In: J. G. Richards, A. P. Farrell, C. J. Brauner (eds) Fish physiology, Vol.27, hypoxia, Elsevier, London, pp.26- 79, 2019.
  36. T. Ford, T. L. Beitinger, "Temperature tolerance in the goldfish, Carassius auratus", Journal of Thermal Biology, Vol.30, No.2, pp.147-152, 2005. DOI: https://doi.org/10.1016/j.jtherbio.2004.09.004
  37. R. S. Dalvi, A. K. Pal, L. R. Tiwari, T. Das, K. Baruah, "Thermal tolerance and oxygen consumption rates of the catfish Horabagrus brachysoma (Gunther) acclimated to different temperatures", Aquaculture, Vol.295, No.1-2, pp.116-119, 2009. DOI: https://doi.org/10.1016/j.aquaculture.2009.06.034
  38. S. K. Yoo, Mariculture, p.626, Guduk Publishing Co., Korea, 2000, pp.570-590.
  39. J. M. Elliot, "Tolerance and resistence to thermal stress in juvenile Atlantic salmon, Salmo salar", Freshwater Biology, Vol.25, No.1, pp.61-70, 1991. DOI: https://doi.org/10.1111/j.1365-2427.1991.tb00473.x
  40. M. Sala-Rabanal, J. Sanchez, A. Ibarz, J. Fernandez, J. Blasco, M. A. Gallardo, "Effects of low temperatures and fasting on heamatologic and plasma biochemical profiles of gilthead sea bream (Sparus aurata)", Fish Physiology and Biochemistry, Vol.29, pp.105-115, 2003. DOI: https://doi.org/10.1023/B:FISH.0000035904.16686.b6
  41. H. S. Choi, S. H. Jung, Y. B. Hur, J. Y. Yang, "Study on the winter mass mortality of red sea bream, Pagrus major in South sea area", Journal of fish Pathology, Vol.21, No.1, pp.35-43, 2008.