DOI QR코드

DOI QR Code

다이타이로신 공유결합으로 자기조립된 펩타이드 나노입자의 합성

Synthesis of Self-Assembled Peptide Nanoparticles Based on Dityrosine Covalent Bonds

  • 허윤미 (경북대학교 의생명융합공학과) ;
  • 민경익 (경북대학교 의생명융합공학과)
  • Hur, Yun-Mi (Biomedical Convergence Science and Technology, Kyungpook National University) ;
  • Min, Kyoung-Ik (Biomedical Convergence Science and Technology, Kyungpook National University)
  • 투고 : 2020.10.13
  • 심사 : 2020.11.11
  • 발행 : 2021.01.25

초록

본 연구에서는 생물학적 공유결합인 다이타이로신 결합을 모방하여 비가역적 공유결합을 기반으로 한 펩타이드의 자기조립 방법을 연구하였다. 고밀도의 다이타이로신 결합을 달성하기 위해 Tyr-Tyr-Leu-Tyr-Tyr (YYLYY) 의 서열을 갖는 펩타이드 단량체를 선택하였다. 다이타이로신 결합으로 자기조립 된 펩타이드 나노입자는 가시광선 하에서 Ru(BPY)3Cl2 촉매를 사용하여 단일공정 광가교를 통해 합성되었다. 펩타이드 나노 입자의 크기에 대한 각 성분의 농도 효과는 동적 광산란, UV-Vis 분광법 및 투과 전자 현미경을 사용하여 확인하였다. 이를 통해 130 nm~350 nm범위의 펩타이드 나노입자의 크기별 최적의 합성 조건을 제시하였다.

In this study, a method of self-assembly of peptides based on irreversible covalent bonds was studied by mimicking a biological covalent bond, dityrosine bond. A tyrosine-rich short peptide monomer having the sequence of Tyr-Tyr-Leu-Tyr-Tyr (YYLYY) was selected to achieve a high-density of dityrosine bond. The peptide nanoparticles covalently self-assembled with dityrosine bonds were synthesized by one-step photo-crosslinking of a peptide using a ruthenium catalyst under visible light. The effect of the concentration of each component for the size of the peptide nanoparticle was studied using dynamic light scattering, UV-Vis spectroscopy, and transmission electron microscopy. As a result, the synthesis conditions for size of the peptide nanoparticles ranging from 130 nm to 350 nm were optimized.

키워드

참고문헌

  1. Lim, Y., Moon, K.-S. and Lee, M., "Recent Advances in Functional Supramolecular Nanostructures Assembled from Bioactive Building Blocks," Chem. Soc. Rev., 38(4), 925-934(2009). https://doi.org/10.1039/b809741k
  2. Santisa, E. D. and Ryadnov, M. G., "Peptide Self-assembly for Nanomaterials: the Old New Kid on the Block," Chem. Soc. Rev., 44(22), 8288-8300(2015). https://doi.org/10.1039/c5cs00470e
  3. Hu, X., Liao, M., Gong, H., Zhang, L., Cox, H., Waigh, T. A. and Lu, J. R., "Recent Advances in Short Peptide Self-assembly: from Rational Design to Novel Applications," Curr. Opin. Colloid Interface Sci., 45, 1-13(2020). https://doi.org/10.1016/j.cocis.2019.08.003
  4. Mann, S., "Self-assembly and Transformation of Hybrid Nanoobjects and Nanostructures Under Equilibrium and Non-equilibrium Conditions," Nat. Mater., 8(10), 781-792(2009). https://doi.org/10.1038/nmat2496
  5. Baek, K., Hwang, I., Roy, I., Shetty, D., and Kim, K., "Self-assembly of Nanostructured Materials Through Irreversible Covalent Bond Formation," Acc. Chem. Res., 48(8), 2221-2229(2015). https://doi.org/10.1021/acs.accounts.5b00067
  6. Luo, T. and Kiick, K. L., "Noncovalent Modulation of the Inverse Temperature Transition and Self-assembly of Elastin-b-Collagen-like Peptide Bioconjugates," J. Am. Chem. Soc., 137(49), 15362-15365(2015). https://doi.org/10.1021/jacs.5b09941
  7. Okesola, B. O. and Mata, A., "Multicomponent Self-assembly as a Tool to Harness New Properties from Peptides and Proteins in Material Design," Chem. Soc. Rev., 47(10), 3721-3736(2018). https://doi.org/10.1039/c8cs00121a
  8. Elvin, C. M., Carr, A. G., Huson, M. G., Maxwell, J. M., Pearson, R. D., Vuocolo, T., Liyou, N. E., Wong, D. C. C., Merritt, D. J. and Dixon, N. E., "Synthesis and Properties of Crosslinked Recombinant Pro-resilin," Nature, 437(7061), 999-1002(2005). https://doi.org/10.1038/nature04085
  9. Partlow, B. P., Applegate, M. B., Omenetto, F. G. and Kaplan, D. L. "Dityrosine Cross-linking in Designing Biomaterials," ACS Biomater. Sci. Eng., 2(12), 2108-2121(2016). https://doi.org/10.1021/acsbiomaterials.6b00454
  10. Burrows, M., Shaw, S. R. and Sutton, G. P., "Resilin and Chitinous Cuticle form a Composite Structure for Energy Storage in Jumping by Froghopper Insects," BMC Biol., 6(1), 41(2008). https://doi.org/10.1186/1741-7007-6-41
  11. Cui, H., Webber, M. J., and Stupp, S. I., "Self-assembly of Peptide Amphiphiles: From Molecules to Nanostructures to Biomaterials," Pept. Sci., 94(1), 1-18(2010). https://doi.org/10.1002/bip.21328
  12. Fancy, D. A. and Kodadek, T., "Chemistry for the Analysis of Protein-protein Interactions: Rapid and Efficient Cross-linking Triggered by Long Wavelength Light," Proc. Natl. Acad. Sci. U. S. A., 96(11), 6020-6024(1999). https://doi.org/10.1073/pnas.96.11.6020
  13. Ding, Y., Li, Y., Qin, M., Cao, Y. and Wang, W., "Photo-cross-Linking Approach to Engineering Small Tyrosine-containing Peptide Hydrogels with Enhanced Mechanical Stability," Langmuir, 29(43), 13299-13306(2013). https://doi.org/10.1021/la4029639
  14. Zhang, D., Peng, H., Sun, B. and Lyu, S., "High Water Content Silk Protein-based Hydrogels with Tunable Elasticity Fabricated via a Ru(II) Mediated Photochemical Cross-linking Method," Fiber. Polym., 18(10), 1831-1840(2017). https://doi.org/10.1007/s12221-017-7463-6
  15. Min, K. I., Kim, D. H., Lee, H. J., Lin, L. and Kim, D. P., "Direct Synthesis of a Covalently Self-Assembled Peptide Nanogel from a Tyrosine-Rich Peptide Monomer and Its Biomineralized Hybrids," Angew. Chem. Int. Ed., 130(20), 5732-5736(2018). https://doi.org/10.1002/ange.201713261
  16. Min, K. I., Yun, G., Jang, Y., Kim, K. R., Ko, Y. H., Jang, H. S., Lee, Y. S., Kim, K. and Kim, D. P., "Covalent Self-assembly and One-step Photocrosslinking of Tyrosine-rich Oligopeptides to form Diverse Nanostructures," Angew. Chem. Int. Ed., 55(24), 6925-6928(2016). https://doi.org/10.1002/anie.201601675
  17. Malencik, D. A., Sprouse, J. F., Swanson, C. A. and Anderson, S. R., "Dityrosine: Preparation, Isolation, and Analysis," Anal. Biochem., 242(2), 202-213(1996). https://doi.org/10.1006/abio.1996.0454
  18. Lehrer, S. S. and Fasman, G. D., "Ultraviolet Irradiation Effects in Poly-L-tyrosine and Model Compounds. Identification of Bityrosine as a Photoproduct," Biochemistry, 6(3), 757-767(1967). https://doi.org/10.1021/bi00855a017
  19. Correia, M., Neves-Petersen, M. T., Jeppesen, P. B., Gregersen, S. and Petersen, S. B., "UV-light Exposure of Insulin: Pharmaceutical Implications Upon Covalent Insulin Dityrosine Dimerization and Disulphide Bond Photolysis," PLoS One, 7(12), e50733(2012). https://doi.org/10.1371/journal.pone.0050733