• Title/Summary/Keyword: Tyrosine

Search Result 1,677, Processing Time 0.034 seconds

Involvement of protein tyrosine phosphatases in adipogenesis: New anti-obesity targets?

  • Bae, Kwang-Hee;Kim, Won Kon;Lee, Sang Chul
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.700-706
    • /
    • 2012
  • Obesity is a worldwide epidemic as well as being a major risk factor for diabetes, cardiovascular diseases and several types of cancers. Obesity is mainly due to the overgrowth of adipose tissue arising from an imbalance between energy intake and energy expenditure. Adipose tissue, primarily composed of adipocytes, plays a key role in maintaining whole body energy homeostasis. In view of the treatment of obesity and obesity-related diseases, it is critical to understand the detailed signal transduction mechanisms of adipogenic differentiation. Adipogenic differentiation is tightly regulated by many key signal cascades, including insulin signaling. These signal cascades generally transfer or amplify the signal by using serial tyrosine phosphorylations. Thus, protein tyrosine kinases and protein tyrosine phosphatases are closely related to adipogenic differentiation. Compared to protein tyrosine kinases, protein tyrosine phosphatases have received little attention in adipogenic differentiation. This review aims to highlight the involvement of protein tyrosine phosphatases in adipogenic differentiation and the possibility of protein tyrosine phosphatases as drugs to target obesity.

Difference in Susceptibility of Tyrosine Residue to Oxidative Iodination between a Thioredoxin Box Region and a Hormonogenic Region

  • Sok, Dai-Eun;Charles J.Sih
    • Archives of Pharmacal Research
    • /
    • v.24 no.5
    • /
    • pp.446-454
    • /
    • 2001
  • Peptide fragments, isolated from proteolytic cleavage of thyroglobulin at specific sites, were examined for the iodination of tyrosine residues. The 50 kDa polypeptide, which was prepared from digestion of bovine thyroglobulin and continuous preparative SDS-PAGE, was subjected to reduction with DTT and alkylation with iodoacetic acid to generate S-car-boxymethylated peptide derivative, which was further hydrohysed by endoproteinase-Asp-N. Peptide products were separated by RP-HPLC, and each fraction was analyzed by LC/ESI-MS and MALDI-MS analyses. Based on the specificity of endoproteinase-Asp-N andthe mass spectra data, a peptide fragment turned out to correspond to a peptide, DALCCVKCPEGSYFQ (1438-1452), characterized by the presence of a thioredoxin box (CVKC) and a tyrosine residue. In addition, another peptide fragment (1453-1465) containing a thioredoxin box (CIPC) and a tyrosine residue was also observed. However, any evidence of iodination of the tyrosine residue present in these peptides was not provided. Meanwhile, tyrosine residues in the peptides, DVEEALAGKYLAGRFA (1366-1381) and DYSGLLLAFQVFLL (1290-1303) were found to be iodinated; mono- or diiodinated tyrosine residues, characteristic of a hormogenic site, existed in both peptides. In addition, the tyrosine residue in the peptide (1218-1252), corresponding to a hormonogenic site was also iodinated. Thus, there was a sharp difference of the susceptibility to oxidative iodination between the tyrosine residue in a hormonogenic site and that in a thioredoxin region. From these results, it is suggested that polypeptide region adjacent to tyrosine residues may govern the susceptibility of tyrosine to oxidative iodination.

  • PDF

Production of L-Tyrosine by PFP Resistant Mutant Induced from Brevibnrcterium sp. (Brevibacterium sp. 로부터 유도된 PFP 내성 변이주에 의한 L-Tyrosine 생성)

  • Bae, Jun-Tae;Park, Gyeong-Suk;Lee, Byeol-Na
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.1
    • /
    • pp.21-28
    • /
    • 1996
  • This study was attempted to investigate the production of L-tyrosine by Brevibacterium flavum ATCC 14067. To select the strain which produce more L-tyrosine, mutants were induced by N-methyl-N'-nitro-nitrosoguanidine (NTG) treatment and phenylalanine auxotrophic mutants were induced by NTG and penicillin treatments. PFP resistant mutant was isolated from a phenylalanine auxotroph by retreatment with NTG and screened for increase of L-tyrosine production. PFP-326 mutant resistant to PPP (100ug/ml) was derived from phenylalanine auxotroph by mutagenesis with NTG and PFP-106 mutant resistant to PFP (1201g/ml) was derived from PFP-326 by mutagenesis with NTG. The composition of media for L-tyrosine production in strain PFP-106 was studied. PFP-106 mutant strain produced 50mg 11 of L-tyrosine while the parent strain produced 0.56mg 11 of L-tyrosine. The optimum composition of medium for L-tyrosine by strain PFP-106 was 10cA sucrose as carbon source, 3% ammonium sulfate as nitrogen source. The optimum cultural condition for producing L-tyrosine by strain PFP-106 was L-phenylalanine at a concentration of 1000g/mg.

  • PDF

Characteristics of L-Phenylalanine and L-Tyrosine Fermentation in Regulatory Mutants of Corynebacterium glutamicum (조절기작을 상실한 Corynebacterium glutamicum 변이주의 L-Phenylalanine 및 L-Tyrosine 발효특성)

  • 김동일
    • KSBB Journal
    • /
    • v.6 no.1
    • /
    • pp.63-68
    • /
    • 1991
  • An auxotrophic regulatory mutant of Corynebacterium glutamicum ATCC 21674 produced 2.1-3.4g/1 of phenylalanine with 2.9-4.4g/l of tyrosine in the batch shake flask fermentations. At higher sugar concentration, the production of both amino acids was lower than that at low sugar concentration. There was a pronounced effect of temperature on the amino acid production. At $30^{\circ}C$, much higher levels of phenylalanine and tyrosine were produced than those at $37^{\circ}C$. The pH decrease in the shake flask fermentation was so fast that it was impossible to maintain a constant pH with calcium carbonate as a buffering agent. Even though the strains we have used are reported as tyrosine auxotrophs, they produced tyrosine and were able to grow on the minimal medium where no tyrosine was present.

  • PDF

Assay Method of L-tyrosine and L-DOPA Mixture Using Spectrophotometer (분광광도계를 이용한 L-tyrosine과 L-DOPA 혼합물의 분석방법)

  • 김지현;유영제
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.191-194
    • /
    • 1990
  • Tyrosine is a monohydrolic aromatic amino acid and DOPA is a tyrosine derivative containing dihydroxy group. DOPA can be synthesized from tyrosine by enzymatic reaction. The separation and quantitative determination of each component are very difficult in the reaction mixture. In the present study, two wavelengths giving maximum absorbance difference of each amino acid were determined using UV/VIS spectrophotometer by wavelength scanning and simple assay method was developed for the analysis of the reaction mixture of tyrosine and DOPA by measuring absorbances of reaction mixture. This method can be simply used for the analysis of the tyrosine and DOPA mixture because it does not require and procedure for the pretreatment of the reaction mixture.

  • PDF

Transforming Growth $Factor-{\beta}$ Enhances Tyrosine Phosphorylation of Two Cellular Proteins in HEL Cells

  • Lim, Chang-Su;Chun, Jeong-Seon;Sung, Soo-Kyung;Lee, Kyu-Cheol;Lee, Chan-Hee
    • BMB Reports
    • /
    • v.30 no.2
    • /
    • pp.119-124
    • /
    • 1997
  • Transforming growth $factor-{\beta}\;(TGF-{\beta})$ is a multifunctional polypeptide that exerts biological roles including cell proliferation, differentiation, extracellular matrix deposition and apoptosis in many different cell types. $TGF-{\beta}$, although known as a negative growth regulator, has not been tested in human embryo lung (HEll cells. This study attempts to understand the role of $TGF-{\beta}$ on growth control of HEL cells in relationship to tyrosine phosphorylation pattern of cellular proteins. In density-arrested HEL cells treated with $TGF-{\beta}$, analysis of Western immunoblot showed induction of tyrosine phosphorylation of two major cellular proteins (15 kDa and 45 kDa). In normal proliferating HEL cells with different concentrations of serum, further analysis indicated that the increase in tyrosine phosphorylation of a 45 kDa protein was regulated in serum concentration-dependent manner. However, in proliferating HEL cells treated with $TGF-{\beta}$, tyrosine phosphorylation of 45 kDa was down-regulated. Calcium involvement in the regulation of tyrosine phosphorylation of 45 kDa and 15 kDa proteins was also examined. Tyrosine phosphorylation of 15 kDa protein but not of 45 kDa protein was regulated by exogenous calcium. The level of tyrosine phosphorylation of 15 kDa protein was low at reduced caclium concentration and high at elevated caclium concentration. $TGF-{\beta}$ reversed the pattern of tyrosine phosphorylation of 15 kDa protein. These results suggest that tyrosine phosphorylation of 45 and 15 kDa proteins in HEL cells may be controlled depending on the physiological status of the cells, i.e., low in arrested cells and high in proliferating cells. And the tyrosine phosphorylation of the two proteins appears to be down- or up-regulated by $TGF-{\beta}$.

  • PDF

Regulation of $Ca_v3.2Ca^{2+}$ Channel Activity by Protein Tyrosine Phosphorylation

  • Huh, Sung-Un;Kang, Ho-Won;Park, Jin-Yong;Lee, Jung-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.365-368
    • /
    • 2008
  • Calcium entry through $Ca_v3.2Ca^{2+}$ channels plays essential roles for various physiological events including thalamic oscillation, muscle contraction, hormone secretion, and sperm acrosomal reaction. In this study, we examined how protein tyrosine phosphatases or protein tyrosine kinases affect $Ca_v3.2Ca^{2+}$ channels reconstituted in Xenopus oocytes. We found that $Ca_v3.2$ channel activity was reduced by 25% in response to phenylarsine oxide (tyrosine phosphatase inhibitor), whereas it was augmented by 19% in response to Tyr A47 or herbimycin A (tyrosine kinase inhibitors). However, other biophysical properties of $Ca_v3.2$ currents were not significantly changed by the drugs. These results imply that $Ca_v3.2$ channel activity is capable of being increased by activation of tyrosine phosphatases, but is decreased by activation of tyrosine kinases.

Activation of Phospholipase D2 through Phosphorylation of Tyrosine-470 in Antigen-stimulated Mast Cells

  • Kim Young Mi
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.492-498
    • /
    • 2005
  • The mechanism of activation of phospholipase D2 (PLD2) remains undefined although mechanisms have been described for the activation of PLDI. By expression of mutated forms of haemaglutinnin-tagged PLD2 in a mast cell (RBL-2H3) line, we show that PLD2 is phosphorylated at tyrosines -11, -14, and -470 and that tyrosine-470 is critical for activation of PLD2 by antigen. Studies were performed with mutated-DNA constructs for haemaglutinnin-tagged PLD2 in which codons for tyrosine -11, -14, -165, and -470 were mutated to phenylalanine either individually or collectively. Transient expression of these constructs showed that mutation of tyrosine -11, -14, -470, or all tyrosines (all-mutated PLD2) suppressed antigen-induced tyrosine phosphorylation of PLD2 but only the tyrosine-470 mutant failed to be activated by antigen as assessed by in vitro assay of immunoprepitated PLD2 or by assay of PLD in intact cells. The critical role of tyrosine-470 was confirmed in studies with add-back mutants (phenylalanine back to tyrosine) of the all-mutated PLD. The findings provide the first description of a mechanism of activation of PLD2 in a physiological setting.

Studies on the ${\beta}-Tyrosinase$ -Part 2. On the Synthesis of Halo-tyrosine by ${\beta}-Tyrosinase$- (${\beta}-Tyrosinase$에 관한 연구 -제2보 ${\beta}-Tyrosinase$에 의한 Halogen화(化) Tyrosine의 합성(合成)-)

  • Kim, Chan-Jo;Nagasawa, Toru;Tani, Yoshiki;Yamada, Hideaki
    • Applied Biological Chemistry
    • /
    • v.22 no.4
    • /
    • pp.198-209
    • /
    • 1979
  • L-Tyrosine, 2-chloro-L-tyrosine, 2-bromo-L-tyrosine, and 2-iodo-L-tyrosine were synthesized by ${\beta}-tyrosinase$ obtained from cells of Escherichia intermedia A-21, through the reversal of the ${\alpha},{\beta}-elimination$ reaction, and their molecular structures were analyzed by element analysis, NMR spectroscopy, mass spectrometry and IR spectroscopy. Rates of synthesis and hydrolysis of halogenated tyrosines by ${\beta}-tyrosinase$, inhibition of the enzyme activity by halogenated phenols, and effects of addition of m-bromophenol on the synthesis of 2-bromotyrosine were determined. The results obtained were as follows: 1) In the synthesis of halogenated tyrosines, the yield of 2-chlorotyrosine from m-chlorophenol were approximately 15 per cent, that of 2-bromotyrosine from m-bromophenol 13.8 per cent, and that of 2-iodotyrosine from m-iodophenol 9.8 per cent. 2) Rate of synthesis of halogenated tyrosines by ${\beta}-tyrosinase$ was slower than that of tyrosine and the rates were decreased in the order of chlorine, bromine and iodine, that is, by increasing the atomic radius. Relative rate of 2-chlorotyrosine synthesis was determined to be 28.2, that of 2-bromotyrosine to be 8.13, and that of 2-iodotyrosine to be 0.98, respectively, against 100 of tyrosine. However 3-iodotyrosine was not synthesized by the enzyme. 3) The relative rate of 2-chlorotyrosine hydrolysis by ${\beta}-tyrosinase$ was 70.7, that of 2-bromotyrosine was 39.0, and that of 2-iodotyrosine was 12.6 against 100 of tyrosine, respectively. The rate of hydrolysis appeared to be decreased in the order of chlorine, bromine and iodine, that is, by increasing the atomic radius or by decreasing the electronegativity. But 3-iodotyrosine was not hydrolyzed by the enzyme. 4) The activity of ${\beta}-tyrosinase$ was inhibited by phenol markedly. Of the halogenated phenols, o-, or m-chlorophenol and o-bromophenol gave marked inhibition on the enzyme action, however inhibition by iodophenol was not strong. Plotting by Lineweaver-Burk method, a mixed-type inhibition by m-chlorophenol was observed and its Ki value was found to be $5.46{\times}10^{-4}M$. 5) During the synthesizing reaction of 2-bromotyrosine by the enzyme, sequential addition of substrate which was m-bromophenol with time intervals and in a small amount resulted in better yield of the product. 6) The halogenated tyrosines which were produced by ${\beta}-tyrosinase$ from pyruvate, ammonia and m-halogenated phenols were analysed to determine their molecular structures by element analysis, NMR spectroscopy, mass spectrometry, and IR spectroscopy. The result indicated that they were 2-chloro-L-tyrosine, 2-bromo-L-tyrosine, and 2-iodo-L-tyrosine, respectively.

  • PDF

Direct tyrosine phosphorylation of Akt/PKB by epidermal growth factor receptor (EGF 수용체에 의한 Akt/PKB의 tyrosine 인산화에 대한 연구)

  • Bae, Sun-Sik;Choi, Jang-Hyun;Yun, Sung-Ji;Kim, Eun-Kyung;Oh, Yong-Suk;Kim, Chi-Dae;Suh, Pann-Ghill
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.185-191
    • /
    • 2007
  • Akt/PKB plays pivotal roles in many physiological responses such as proliferation, differentiation, apoptosis, and angiogenesis. Here we show that tyrosine phosphorylation of Akt/PKB is essential for the subsequent phosphorylation at $Thr^{\308}$. Tyrosine phosphorylation of Akt/PKB was induced by stimulation of COS-7 cells with epidermal growth factor receptor (EGF) and its phosphorylation was significantly enhanced by constitutive targeting of Akt/PKB to the plasma membrane by myristoylation. Interestingly, incubation of affinity purified Myc-tagged Akt/PKB with purified EGF receptor resulted in tyrosine phosphorylation as well as $Ser^{\473}$ phosphorylation of Akt/PKB. In addition, tyrosine-phosphorylated Akt/PKB could directly associate with activated EGF receptor in vitro. Finally, alanine mutation at putative tyrosine phosphorylation site $(Tyr^{\326})$ abolished EGF induced $Thr^{\308}$ phosphorylation of wild type as well as constitutively active form of Akt/PKB. Given these results we suggest here that direct tyrosine phosphorylation of Akt/PKB by EGF receptor could be another mechanism of EGF-induced control of many physiological responses.