DOI QR코드

DOI QR Code

PEMFC 고분자막의 화학적 내구성 평가를 위한 Fenton 반응 조건에 관한 연구

Study on the Fenton Reaction Condition for Evaluation of Chemical Durability of PEMFC Membrane

  • Oh, Sohyeong (Department of Chemical Engineering, Sunchon National University) ;
  • Park, Jisang (Department of Chemical Engineering, Sunchon National University) ;
  • Jung, Sunggi (Department of Chemical Engineering, Sunchon National University) ;
  • Jeong, Jihong (SANG-A FRONTEC CO. Ltd) ;
  • Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
  • 투고 : 2020.11.10
  • 심사 : 2020.11.22
  • 발행 : 2021.01.25

초록

고분자 연료전지(PEMFC) 고분자막의 화학적 내구성을 평가하는데 Fenton 반응이 자주 사용된다. 그러나 과산화수소와 철 이온의 격렬한 반응 때문에 재현성이 낮아 실험 데이터를 비교하기가 어려운 문제점이 있다. 본 연구에서는 Fenton 반응에 의한 고분자막 내구성 실험의 재현성을 향상시키기 위한 반응조건을 찾고자 하였다. 과산화수소 농도는 30%로 고정시키고 철이온 농도와 온도, 교반속도, 시료크기를 변화시키며 라디칼에 열화된 Nafion 고분자막의 불소이온 농도를 측정했다. 철이온 농도를 높게하거나 고분자막 시료 크기를 크게하고, Fenton 반응 온도를 80 ℃로 높게하면 실험편차가 커져서 철이온 농도 10 ppm, 온도 70 ℃와 시료크기 0.5 ㎠가 적합하였다.

The Fenton reaction is often used to evaluate the chemical durability of polymer membranes of Proton Exchange Membrane Fuel Cells (PEMFC). However, due to the violent reaction between hydrogen peroxide and iron ions, it is difficult to compare experimental data because of low reproducibility. In this study, we tried to find the reaction conditions to improve the reproducibility of the durability test of the membrane by the Fenton reaction. The hydrogen peroxide concentration was fixed at 30%, the iron ion concentration, temperature, stirring speed, and sample size were varied, and the fluorine ion concentration of the Nafion polymer membrane deteriorated by radicals was measured. When the iron ion concentration was increased or the membrane sample size was increased, and the reaction temperature was increased to 80 ℃, the experimental deviation increased, so an iron ion concentration of 10 ppm, a temperature of 70 ℃, and a sample size of 0.5 ㎠ were suitable.

키워드

참고문헌

  1. Borup, R., Meyers, J., Pivovar, B., Kim, Y. S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K. and Iwashita, N., "Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation," Chem. Rev., 107(10), 3904-51(2007). https://doi.org/10.1021/cr050182l
  2. Williams, M. C., Strakey, J. P. and Surdoval, W. A., "The U. S. Department of Energy, Office of Fossil Energy Stationary Fuel cell Program," J. Power Sources, 143(1-2), 191-196(2005). https://doi.org/10.1016/j.jpowsour.2004.12.003
  3. U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
  4. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S. "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc., 140(10), 2872-2877(1993). https://doi.org/10.1149/1.2220925
  5. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkion, D. P., "Aging Mechanism and lifetime of PEFC and DMFC," J. Power Sources, 127(1-2), 127-134(2004). https://doi.org/10.1016/j.jpowsour.2003.09.033
  6. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrogen Energy, 31(13), 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  7. Pozio, A., Silva, R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48(11), 1543-1548(2003). https://doi.org/10.1016/S0013-4686(03)00026-4
  8. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152(1), A104-A113(2005). https://doi.org/10.1149/1.1830355
  9. Curtin, D. E., Lousenberg, R. D., Henry, T, J., Tangeman, P. C. and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance and Life," J. Power Sources, 131(1-2), 41-48(2004). https://doi.org/10.1016/j.jpowsour.2004.01.023
  10. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger. A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  11. Collier, A., Wang, H., Yaun, X., Zhang, J. and Wilison, D. P., "Degradation of Polymer Electrolyte Membranes," Int. J. Hydrogen Energy, 31(13), 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  12. Wang, H. T., Pan, M. and Li, D., "Ex Situ Investigation of the Proton Exchange Membrane Chemical Decomposition," Int. J. Hydrogen Energy, 33(9), 2283-2288(2008). https://doi.org/10.1016/j.ijhydene.2008.01.052
  13. Kinumoto, T., Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R. and Takaka, A., "Durability of Perfluorinated Ionomer Membrane Against Hydrogen Peroxide," J. Power Sources, 158(2), 1222- 1228(2006). https://doi.org/10.1016/j.jpowsour.2005.10.043
  14. Kim, T. H., Lee, J. H., Cho, G. J. and Park, K. P., "Degradation of Nafion Membrane by Oxygen Radical," Korean Chem. Eng. Res., 44(6), 597-601(2006).
  15. Pearman, B. P., Mohajeri, N., Slattery, D. K., Hampton, M. D., Seal, S. and Cullen, D. A., "The Chemical Behavior and Degradation Mitigation Effect of Cerium Oxide Nanoparticles in Perflu orosulfonic Acid Polymer Electrolyte Membranes," Polym. Degrad. Stab., 98(9), 1766-1772(2013). https://doi.org/10.1016/j.polymdegradstab.2013.05.025
  16. Hao, J., Jiang, Y., Gao, X., Xie, F., Shao, Z. and Yi, B., "Degradation Reduction of Polybenzimidazole Membrane Blended with CeO2 as a Regenerative Free Radical Scavenger," J. Membr. Sci., 522(15), 23-30(2017). https://doi.org/10.1016/j.memsci.2016.09.010
  17. Zhu, H., Pei, S., Tang, J., Li, H., Wang, L., Yuan, W. and Zhang, Y., "Enhanced Chemical Durability of Perfluorosulfonic Acid Membranes Through Incorporation of Terephthalic Acid as Radical Scavenger," J. Membr. Sci., 432(1), 66-72(2013). https://doi.org/10.1016/j.memsci.2012.12.050
  18. Chang, Z., Yan, H., Tian, J., Pan, H. and Pu, H., "The Effect of Electric Field on the Oxidative Degradation of Polybenzimi Dazole Membranes Using Electro-fenton Test," Polym. Degrad. Stab., 138, 98-105(2017). https://doi.org/10.1016/j.polymdegradstab.2017.02.014
  19. Liang, Z., Chen, W., Liu, J., Wang, S., Zhou, Z., Li, W., Sun, G. and Xin, Q., "FT-IR Study of the Microstructure of Nafion Membrane," J. Membrane Science, 233(1-2), 39-44(2004). https://doi.org/10.1016/j.memsci.2003.12.008
  20. Hwang, B. C., Oh, S. H., Lee, M. S., Lee, D. H. and Park, K. P., "Decrease in Hydrogen Crossover through Membrane of Polymer Electrolyte Membrane Fuel Cells at the Initial Stages of an Acceleration Stress Test," Korean J. Chem. Eng., 35(11), 2290-2295 (2018). https://doi.org/10.1007/s11814-018-0142-5
  21. Oh, S. H, Kwag, A. H., Lee, D. U., Lee, M. S., Lee, D. H. and Park, K. P., "Comparison of Membrane Degradation of PEMFC by Fenton Reaction and OCV Holding," Korean Chem. Eng. Res., 57(6), 768-773(2019). https://doi.org/10.9713/kcer.2019.57.6.768