DOI QR코드

DOI QR Code

효소당화 효율 향상을 위한 섬유소계 바이오매스의 고농도 유기용매 전처리 공정

Enhancement of Enzymatic Hydrolysis of Cellulosic Biomass by Organosolv Pretreatment Using High Concentration of Ethanol

  • Kim, Jun Seok (Department of Chemical Engineering, Kyonggi University)
  • 투고 : 2020.11.20
  • 심사 : 2020.12.25
  • 발행 : 2021.01.25

초록

섬유소계 바이오매스는 전분질계 바이오매스에 비해 리그닌이 많아 전처리가 필수적으로 요구된다. 섬유소계 바이오매스를 전처리하기 위한 용매인 에탄올은 효소당화(enzymatic hydrolysis)에 저해가 되는 물질을 분별하기 쉬우며, 증류를 과정을 통해 쉽게 재사용이 가능하다. 침출식 전처리 공정은 반응기 내에서 연속적으로 성분을 분별하여 고-액 분리가 용이하며 향후 스케일업에서도 유리하다. 본 연구에서는 이러한 장점들을 활용하여 대표 섬유소계 바이오매스인 옥수수대(corn stover)로 전처리를 진행하였으며 해당 공정을 밀대(wheat straw)와 거대억새(miscanthus)에 적용하여 추가적인 바이오매스의 적용 가능성을 확인하였다.

The pretreatment of cellulosic biomass is essentially needed because it has more lignin compared with a starch biomass. Ethanol as an organosolv for pretreatment can easily separate some components which can inhibit enzymatic hydrolysis and be re-usuable by distillation. The flow-through process have some strength, separating components continuously, development for scale up. In this research, two-kinds (wheat straw, miscanthus) of biomass was pretreated for development of enzymatic hydrolysis by adoption of pretreatment process of corn stover.

키워드

참고문헌

  1. Park, J. K., Mun, H. S., Park, M. J., Jang, H. W. and Jeong, D. W., "Bioethanol Production Using Microalgae," J. Korean Soc of Environ Eng., 42(3), 164-176(2020). https://doi.org/10.4491/ksee.2020.42.3.164
  2. Wilkie, A. C., Riedesel, K. J. and Owens, J. M., "Stillage Characterization and Anaerobic Treatment of Ethanol Stillage from Conventional and Cellulosic Feedstocks," Biomass Bioenergy., 19(2), 63-102(2000). https://doi.org/10.1016/S0961-9534(00)00017-9
  3. Yang, Q. and Pan, X., "Correlation Between Lignin Physicochemical Properties and Inhibition to Enzymatic Hydrolysis of Cellulose," Biotechnol Bioeng., 113(6), 1213-1224(2016). https://doi.org/10.1002/bit.25903
  4. Ballesteros, I., Oliva, J. M., Negro, M. J., Manzanares, P. and Ballesteros, M., "Enzymic Hydrolysis of Steam Exploded Herbaceous Agricultural Waste (Brassica carinata) at Different Particule Sizes," Process Biochem., 38(2), 187-192(2002). https://doi.org/10.1016/S0032-9592(02)00070-5
  5. Bhagia, S., Li, H., Gao, X., Kumar, R. and Wyman, C. E., "Flowthrough Pretreatment with Very Dilute Acid Provides Insights into High Lignin Contribution to Biomass Recalcitrance," Biotechnol Biofuels., 9(1), 245(2016). https://doi.org/10.1186/s13068-016-0660-5
  6. Badiei, M., Asim, N., Jahim, J. M. and Sopian K. S., "Comparison of Chemical Pretreatment Methods for Cellulosic Biomass," APCBEE Procedia, 9, 170-174(2014). https://doi.org/10.1016/j.apcbee.2014.01.030
  7. Raymond, R. and Ehrman, T., "Determination of Carbohydrates in Biomass by High Performance Liquid Chromatography," Laboratory Analytical Procedure No. 002, National Renewable Research Laboratory, Golden(1996).
  8. Templeton, D. and Ehrman, T., "Determination of Acid-Insoluble Lignin in Biomass," Laboratory Analytical Procedure No. 003, National Renewable Research Laboratory, Golden(1995).
  9. Moniz, P., Lino, J., Duarte, L. C., Roseiro, L. B., Boeriu, C. G., Pereira, H. and Carvalheiro, F., "Fractionation of Hemicelluloses and Lignin from Rice Straw by Combining Autohydrolysis and Optimised Mild Organosolv Delignification," BioResources., 10, 2626-2641(2015).
  10. Wayman, M. and Chua, M. G. S., "Characterization of Autohydrolysis Aspen (P. tremuloides) Lignins. Part 1. Composition and Molecular Weight Distribution of Extracted Autohydrolysis Lignin," Can. J. Chem., 57(10), 1141-1149(1979). https://doi.org/10.1139/v79-187
  11. Park, Y. C. and Kim, J. S., "Pretreatment of Helianthus Tuberosus Residue by Two-Stage Flow Through Process," Korean Chem. Eng. Res., 53(4), 417-424(2015). https://doi.org/10.9713/kcer.2015.53.4.417
  12. Lee, Y. N., Lee, S. B. and Lee, J. D., "Characteristics of Lignin Removal in Cellulosic Ethanol Production Process," Appl. Chem. Eng., 22(1), 77-80(2011).