DOI QR코드

DOI QR Code

Analysis of Opinions Suggested by High School Students in the Critical Opinion Activity on Inquiry

탐구에 대한 비판적 의견 제시 활동에서 고등학생이 제시한 의견 분석

  • Received : 2021.10.12
  • Accepted : 2021.12.08
  • Published : 2021.12.31

Abstract

The purpose of this study is to analyze high school students' critical opinions on others' inquiries in small group open inquiry. Forty-one high school students participated in these activities at the inquiry planning stage and the intermediate stage of inquiry. In the two activities, 595 and 233 opinions were presented respectively, and analyzed into categories based on the inquiry process. The main research results are as follows: first, many opinions were presented in the areas of 'problem recognition and hypothesis setting' and 'design of inquiry' in the feedback on the inquiry plan, especially related to 'revision and addition of research problems,' 'research targets and conditions,' and 'control of variables.' Second, in the feedback on the results of the inquiry, there were many opinions related to 'report preparation' and 'design of inquiry' area. Based on the research results, implications related to the application of critical opinion activity were discussed.

이 연구의 목적은 소그룹 자유 탐구에서 학습자들끼리 서로의 탐구에 대해 비판적 의견을 제시하는 활동에서 학생들이 제시한 의견을 분석하는 것이다. 41명의 학생들이 한 학기 동안 자유 탐구를 수행하면서 탐구 계획 단계와 종료 직전 단계에서 비판적 의견 제시 활동에 참여하였다. 두 차례의 활동에서 각각 595개, 233개의 피드백이 제시되었으며, 탐구 과정을 토대로 한 범주로 분석하였다. 주요 연구 결과는 다음과 같다. 첫째, 탐구 계획에 대한 의견 제시 활동에서 '문제인식 및 가설설정', '탐구 설계' 영역에 많은 피드백이 제시되었는데, 특히 '연구 문제 수정 및 추가', '연구 대상 및 조건', '변인 통제'와 관련된 의견이 많았다. 둘째, 탐구 수행 결과에 대한 의견 제시 활동에서는 '보고서 작성'과 관련된 피드백 의견이 많았으며, '탐구 설계' 영역에 대한 의견도 많이 제시되었다. 연구 결과를 바탕으로 학생의 소그룹 자유탐구에서 비판적 의견제시 활동의 적용과 관련된 시사점을 논의하였다.

Keywords

References

  1. Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural. Science Education, 82, 417-436. https://doi.org/10.1002/(SICI)1098-237X(199807)82:4<417::AID-SCE1>3.0.CO;2-E
  2. Australian Curriculum, Assessment and Reporting Authority (2014). The Australian Curriculum. Sydney, Australia: Author.
  3. Ballantyne, R., Hughies, K., & Mylonas, A. (2002). Developing procedures for implementing peer assessment in large classes using an action research process. Assessment and Evaluation in Higher Education, 27(5), 427-441. https://doi.org/10.1080/0260293022000009302
  4. Bell, R., Blair, L., Crawford, B., & Lederman, N. G. (2003). Just do it? The impact of a science apprenticeship program on high school students' understandings of the nature of science and scientific inquiry. Journal of Research in Science Teaching, 40, 487-509. https://doi.org/10.1002/tea.10086
  5. Cheon, M., & Lee, B. (2018). Analysis of characteristics of scientific inquiry problem finding process in small group free inquiry. Journal of the Korean Association for Science Education, 38(6), 865-874. https://doi.org/10.14697/JKASE.2018.38.6.865
  6. Cole, S., Coats, M., & Lentell, H. (1986). Towards good teaching by correspondence. Open Learning: The Journal of Open, Distance and e-Learning, 1(1), 16-22. https://doi.org/10.1080/0268051860010105
  7. Hodson, D. (1982). Is there a scientific method? Education in Chemistry, 19(4), 112-126.
  8. Kim, G., & Ha, M. (2019). Exploring the difficulties of high school students in self-directed scientific inquiry. Journal of the Korean Association for Science Education, 39(6). 707-715.
  9. Kim, H., & Lee, B. (2018). Analysis of the types of physics inquiries in science textbooks based on the 2015 revised national science curriculum. New Physics: Sae Mulli, 68(10), 1059-1068. https://doi.org/10.3938/npsm.68.1059
  10. Kim, H., & Song, J. (2004). The exploration of open scientific inquiry model emphasizing students' argumentation. Journal of the Korean Association for Science Education, 24(6), 1216-1234.
  11. Kim, H., Yoon, H., Lee, K., & Cho, H. (2010). Secondary science teachers' perception of 'Free inquiry' of the 2007 revised science curriculum. Secondary Educational Research, 58(3), 213-235. https://doi.org/10.25152/ser.2010.58.3.213
  12. Kollar, I., & Fischer, F. (2010). Peer assessment as collaborative learning: A cognitive perspective. Learning and Instruction, 20(4), 344-348. https://doi.org/10.1016/j.learninstruc.2009.08.005
  13. Lee, B. (2013). Pre-service science teachers' difficulties in the 'Inquiry mentoring' program. Journal of the Korean Association for Science Education, 33(7), 1300-1311. https://doi.org/10.14697/JKASE.2013.33.7.1300
  14. Lee, B. (2021). Analysis of the pre-service science teachers' strategies in an inquiry theme finding activity through a change of prior inquiry. New Physics: Sae Mulli, 71(5), 490-499. https://doi.org/10.3938/NPSM.71.490
  15. Lee, B., & Lee, S. (2004). Analysis of interaction pattern of the students in online discussion of physics investigation. Journal of the Korean Association for Science Education, 24(3),638-645.
  16. Lee, S., & Lee, B. (2018). High-school physics teachers' difficulties in teaching textbook physics inquiries. Journal of the Korean Association for Science Education, 38(4), 519-526. https://doi.org/10.14697/JKASE.2018.38.4.519
  17. Lee, S., & Lee, B. (2019). Development of a science teacher in-service training program for improving physics inquiry teaching ability. New Physics: Sae Mulli, 69(4), 401-409. https://doi.org/10.3938/npsm.69.401
  18. Miles, M. B., Huberman, A. M., & Saldana, J. (2018). Qualitative data analysis: A methods sourcebook. Thousand Oaks, CA: SAGE Publications, Inc.
  19. Ministry of Education (1997). National Science Curriculum (No. 1997-15). Seoul, Korea: Author.
  20. Ministry of Education & Human Resources Development (2017). National Science Curriculum (No. 2007-79). Seoul: Author.
  21. Nancy M. T. (2009). Designing peer review for pedagogical success. Journal of College Science Teaching, 38(4) 14-19.
  22. National Research Council (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
  23. Park, J. (2005). Analysis of the characteristics and processes of the generation of scientific inquiry problems. Sae Mulli, 50(4), 203-211.
  24. Ryu, S., & Park, J. (2008). Analysis of the scientific inquiry problem generated by the scientifically-gifted in ill and well inquiry situation. Journal of the Korean Association for Science Education, 28(8), 860-869.
  25. Shim, K., Park, J., Lee, K., Son, J., Moon, H., Park, J., Bae, M., So, Y., Ahn, S., Lee, S., Jeon, B., & Jho, H. (2018). Science inquiry experiment. Seoul: Visang.
  26. Son, J., Lee, B., Jho, H., Choi, J., & Sim, K. (2018). Analysis of organization of physics curriculum in science core schools. New Physics: Sae Mulli, 68(12), 1347-1355. https://doi.org/10.3938/NPSM.68.1347
  27. Topping, K., Smith, F. F., Swanson, I., & Elliot, A. (2000). Formative peer assessment of academic writing between postgraduate students. Assessment and Evaluation in Higher Education, 25(2), 149-169. https://doi.org/10.1080/713611428
  28. Department for Education (2015). National curriculum in England: science programmes of study. London, England: Author.
  29. Wellington, J. J. (1998). Practical work in science: time for a reappraisal. In J. J. Wellington (Ed.), Practical work in school science (pp. 3-15). New York: Routledge.
  30. Zion, M., Slezak, M., Shapira, D., Link, E., Bashan, N., Brumer, M., Orian, T., Nussinowitz, R., Court, D., Agrest, B., Mendelovici, R., & Valanides, N. (2004). Dynamic, open inquiry in biology learning. Science Education, 88(5), 728-753. https://doi.org/10.1002/sce.10145