References
- Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M. and Stuppner, H. (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol. Adv. 33, 1582-1614. https://doi.org/10.1016/j.biotechadv.2015.08.001
- Aydogmus-Ozturk, F., Gunaydin, K., Ozturk, M., Jahan, H., Duru, M. E. and Choudhary, M. I. (2018) Effect of Sideritis leptoclada against HT-144 human malignant melanoma. Melanoma Res. 28, 502-509. https://doi.org/10.1097/cmr.0000000000000487
- Briganti, S., Camera, E. and Picardo, M. (2003) Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 16, 101-110. https://doi.org/10.1034/j.1600-0749.2003.00029.x
- Costin, G. E. and Hearing, V. J. (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 21, 976-994. https://doi.org/10.1096/fj.06-6649rev
- DeCaprio, A. P. (1999) The toxicology of hydroquinone - relevance to occupational and environmental exposure. Crit. Rev. Toxicol. 29, 283-330. https://doi.org/10.1080/10408449991349221
- Drager, G., Kirschning, A., Thiericke, R. and Zerlin, M. (1996) Decanolides, 10-membered lactones of natural origin. Nat. Prod. Rep. 13, 365-375. https://doi.org/10.1039/NP9961300365
- Fenical, W. and Jensen, P. R. (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat. Chem. Biol. 2, 666-673. https://doi.org/10.1038/nchembio841
- Ferraz, H. M. C., Bombonato, F. I., Sano, M. K. and Longo Jr., L. S. (2008) Natural occurrence, biological activities and synthesis of eight-, nine-, and eleven-membered ring lactones. Quim. Nova 31, 885-900. https://doi.org/10.1590/S0100-40422008000400029
- Garcia-Gavin, J., Gonzalez-Vilas, D., Fernandez-Redondo, V. and Toribio, J. (2010) Pigmented contact dermatitis due to kojic acid. A paradoxical side effect of a skin lightener. Contact Derm. 62, 63-64. https://doi.org/10.1111/j.1600-0536.2009.01673.x
- Haefner, B. (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov. Today 8, 536-544. https://doi.org/10.1016/S1359-6446(03)02713-2
- Kim, D., Lee, E. J., Lee, J., Leutou, A. S., Shin, Y. H., Choi, B., Hwang, J. S., Hahn, D., Choi, H., Chin, J., Cho, S. J., Hong, Y. D., Ko, J., Seong, C. N., Maloney, K. N., Oh, D. C., Yang, I., Hwang, H. and Nam, S. J. (2018) Antartin, a cytotoxic zizaane-type sesquiterpenoid from a Streptomyces sp. isolated from an antarctic marine sediment. Mar. Drugs 16, 130. https://doi.org/10.3390/md16040130
- Kim, K., Leutou, A. S., Jeong, H., Kim, D., Seong, C. N., Nam, S. J. and Lim, K. M. (2017a) Anti-pigmentary effect of (-)-4-hydroxysattabacin from the marine-derived bacterium Bacillus sp. Mar. Drugs 15, 138. https://doi.org/10.3390/md15050138
- Kim, S. E., Lee, C. M. and Kim, Y. C. (2017b) Anti-melanogenic effect of Oenothera laciniata methanol extract in melan-a cells. Toxicol. Res. 33, 55-62. https://doi.org/10.5487/TR.2017.33.1.055
- Kim, M., Baek, H. S., Lee, M., Park, H., Shin, S. S., Choi, D. W. and Lim, K. M. (2016) Rhododenol and raspberry ketone impair the normal proliferation of melanocytes through reactive oxygen speciesdependent activation of GADD45. Toxicol. In Vitro 32, 339-346. https://doi.org/10.1016/j.tiv.2016.02.003
- Kim, M., Lee, C. S. and Lim, K. M. (2019) Rhododenol activates melanocytes and induces morphological alteration at sub-cytotoxic levels. Int. J. Mol. Sci. 20, 5665. https://doi.org/10.3390/ijms20225665
- Lee, C. S., Jang, W. H., Park, M., Jung, K., Baek, H. S., Joo, Y. H., Park, Y. H. and Lim, K. M. (2013) A novel adamantyl benzylbenzamide derivative, AP736, suppresses melanogenesis through the inhibition of cAMP-PKA-CREB-activated microphthalmia-associated transcription factor and tyrosinase expression. Exp. Dermatol. 22, 762-764. https://doi.org/10.1111/exd.12248
- Lee, M., Park, H., Jeon, S. W., Bang, J. K., Chung, K. Y., Choi, D. W., Kim, E. J. and Lim, K. M. (2015) Novel anti-melanogenic hexapeptoids, PAL-10 and PAL-12. Arch. Dermatol. Res., 307, 249-257. https://doi.org/10.1007/s00403-015-1555-1
- Luo, X., Li, F., Hong, J., Lee, C. O., Sim, C. J., Im, K. S. and Jung, J. H. (2006) Cytotoxic oxylipins from a marine sponge Topsentia sp. J. Nat. Prod. 69, 567-571. https://doi.org/10.1021/np0503552
- Mutak, S. (2007) Azalides from azithromycin to new azalide derivatives. J. Antibiot. 60, 85-122. https://doi.org/10.1038/ja.2007.10
- Niwa, H., Wakamatsu, K. and Yamada, K. (1989) Halicholactone and neohalicholactone, two novel fatty acid metabolites from the marine sponge Halichondria okadai Kadota. Tetrahedron Lett. 30, 4543-4546. https://doi.org/10.1016/S0040-4039(01)80740-1
- Parenty, A., Moreau, X., Niel, G. and Campagne, J. M. (2013) Update 1 of: macrolactonizations in the total synthesis of natural products. Chem. Rev. 113, PR1-PR40. https://doi.org/10.1021/cr300129n
- Pillaiyar, T., Manickam, M. and Jung, S. H. (2017) Downregulation of melanogenesis: drug discovery and therapeutic options. Drug Discov. Today 22, 282-298. https://doi.org/10.1016/j.drudis.2016.09.016
- Shiina, I. (2007) Total synthesis of natural 8- and 9-membered lactones: recent advancements in medium-sized ring formation. Chem. Rev. 107, 239-273. https://doi.org/10.1021/cr050045o
- Song, I., Gu, H., Han, H., Lee, N., Cha, J., Son, Y. and Kwon, J. (2018) Effects of 7-MEGATM 500 on oxidative stress, inflammation, and skin regeneration in H2O2-treated skin cells. Toxicol. Res. 34, 103-110. https://doi.org/10.5487/TR.2018.34.2.103
- van Tamelen, E. E., Dickie, J. P., Loomans, M. E., Dewey, R. S. and Strong, F. M. (1961) The chemistry of antimycin A. X. structure of the antimycins. J. Am. Chem. Soc. 83, 1639-1646. https://doi.org/10.1021/ja01468a023
- Zhu, W. and Gao, J. (2008) The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J. Investig. Dermatol. Symp. Proc. 13, 20-24. https://doi.org/10.1038/jidsymp.2008.8
Cited by
- Camellia japonica Essential Oil Inhibits α-MSH-Induced Melanin Production and Tyrosinase Activity in B16F10 Melanoma Cells vol.2021, 2021, https://doi.org/10.1155/2021/6328767