DOI QR코드

DOI QR Code

Antaroide, a Novel Natural Nine-Membered Macrolide, Inhibits Melanin Biosynthesis in B16F10 Murine Melanoma Cells

  • Ryu, Min-Ji (Department of Chemistry and Nanoscience, Ewha Womans University) ;
  • Baek, Eun-Ki (College of Pharmacy, Ewha Womans University) ;
  • Kim, Soyeon (College of Pharmacy, Ewha Womans University) ;
  • Seong, Chi Nam (Department of Biology, College of Life Science and Natural Resource, Sunchon National University) ;
  • Yang, Inho (Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Lim, Kyung-Min (College of Pharmacy, Ewha Womans University) ;
  • Nam, Sang-Jip (Department of Chemistry and Nanoscience, Ewha Womans University)
  • Received : 2020.04.14
  • Accepted : 2020.09.08
  • Published : 2021.01.01

Abstract

The demand for natural substances with anti-melanogenic activity is increasing due to the recent interest in skin whitening. Intensive investigation on the culture broth of Streptomyces sp. SCO-736, a marine bacterium from the Antarctica coast, has led to the isolation of a new natural product named antaroide (1). The chemical structure was established through the interpretation of MS, UV, and NMR spectroscopic data. Antaroide is a nine-membered macrolide with lactone and lactam moieties. To investigate its applicability in skin whitening cosmetics, its anti-melanogenic activity in B16F10 murine melanoma cells was examined. As a result, antaroide displayed strong inhibitory activities against melanin synthesis and also attenuated the dendrite formation induced by the α-melanocyte stimulating hormone (α-MSH). Antaroide suppressed the mRNA expression of the melanogenic enzymes such as tyrosinase, TRP-1 and TRP-2. This suggests that it may serve as a transcriptional regulator of melanogenesis. Collectively, the discovery of this novel natural nine-membered macrolide and its anti-melanogenic activity could give new insights for the development of skin whitening agents.

Keywords

References

  1. Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M. and Stuppner, H. (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol. Adv. 33, 1582-1614. https://doi.org/10.1016/j.biotechadv.2015.08.001
  2. Aydogmus-Ozturk, F., Gunaydin, K., Ozturk, M., Jahan, H., Duru, M. E. and Choudhary, M. I. (2018) Effect of Sideritis leptoclada against HT-144 human malignant melanoma. Melanoma Res. 28, 502-509. https://doi.org/10.1097/cmr.0000000000000487
  3. Briganti, S., Camera, E. and Picardo, M. (2003) Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 16, 101-110. https://doi.org/10.1034/j.1600-0749.2003.00029.x
  4. Costin, G. E. and Hearing, V. J. (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 21, 976-994. https://doi.org/10.1096/fj.06-6649rev
  5. DeCaprio, A. P. (1999) The toxicology of hydroquinone - relevance to occupational and environmental exposure. Crit. Rev. Toxicol. 29, 283-330. https://doi.org/10.1080/10408449991349221
  6. Drager, G., Kirschning, A., Thiericke, R. and Zerlin, M. (1996) Decanolides, 10-membered lactones of natural origin. Nat. Prod. Rep. 13, 365-375. https://doi.org/10.1039/NP9961300365
  7. Fenical, W. and Jensen, P. R. (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat. Chem. Biol. 2, 666-673. https://doi.org/10.1038/nchembio841
  8. Ferraz, H. M. C., Bombonato, F. I., Sano, M. K. and Longo Jr., L. S. (2008) Natural occurrence, biological activities and synthesis of eight-, nine-, and eleven-membered ring lactones. Quim. Nova 31, 885-900. https://doi.org/10.1590/S0100-40422008000400029
  9. Garcia-Gavin, J., Gonzalez-Vilas, D., Fernandez-Redondo, V. and Toribio, J. (2010) Pigmented contact dermatitis due to kojic acid. A paradoxical side effect of a skin lightener. Contact Derm. 62, 63-64. https://doi.org/10.1111/j.1600-0536.2009.01673.x
  10. Haefner, B. (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov. Today 8, 536-544. https://doi.org/10.1016/S1359-6446(03)02713-2
  11. Kim, D., Lee, E. J., Lee, J., Leutou, A. S., Shin, Y. H., Choi, B., Hwang, J. S., Hahn, D., Choi, H., Chin, J., Cho, S. J., Hong, Y. D., Ko, J., Seong, C. N., Maloney, K. N., Oh, D. C., Yang, I., Hwang, H. and Nam, S. J. (2018) Antartin, a cytotoxic zizaane-type sesquiterpenoid from a Streptomyces sp. isolated from an antarctic marine sediment. Mar. Drugs 16, 130. https://doi.org/10.3390/md16040130
  12. Kim, K., Leutou, A. S., Jeong, H., Kim, D., Seong, C. N., Nam, S. J. and Lim, K. M. (2017a) Anti-pigmentary effect of (-)-4-hydroxysattabacin from the marine-derived bacterium Bacillus sp. Mar. Drugs 15, 138. https://doi.org/10.3390/md15050138
  13. Kim, S. E., Lee, C. M. and Kim, Y. C. (2017b) Anti-melanogenic effect of Oenothera laciniata methanol extract in melan-a cells. Toxicol. Res. 33, 55-62. https://doi.org/10.5487/TR.2017.33.1.055
  14. Kim, M., Baek, H. S., Lee, M., Park, H., Shin, S. S., Choi, D. W. and Lim, K. M. (2016) Rhododenol and raspberry ketone impair the normal proliferation of melanocytes through reactive oxygen speciesdependent activation of GADD45. Toxicol. In Vitro 32, 339-346. https://doi.org/10.1016/j.tiv.2016.02.003
  15. Kim, M., Lee, C. S. and Lim, K. M. (2019) Rhododenol activates melanocytes and induces morphological alteration at sub-cytotoxic levels. Int. J. Mol. Sci. 20, 5665. https://doi.org/10.3390/ijms20225665
  16. Lee, C. S., Jang, W. H., Park, M., Jung, K., Baek, H. S., Joo, Y. H., Park, Y. H. and Lim, K. M. (2013) A novel adamantyl benzylbenzamide derivative, AP736, suppresses melanogenesis through the inhibition of cAMP-PKA-CREB-activated microphthalmia-associated transcription factor and tyrosinase expression. Exp. Dermatol. 22, 762-764. https://doi.org/10.1111/exd.12248
  17. Lee, M., Park, H., Jeon, S. W., Bang, J. K., Chung, K. Y., Choi, D. W., Kim, E. J. and Lim, K. M. (2015) Novel anti-melanogenic hexapeptoids, PAL-10 and PAL-12. Arch. Dermatol. Res., 307, 249-257. https://doi.org/10.1007/s00403-015-1555-1
  18. Luo, X., Li, F., Hong, J., Lee, C. O., Sim, C. J., Im, K. S. and Jung, J. H. (2006) Cytotoxic oxylipins from a marine sponge Topsentia sp. J. Nat. Prod. 69, 567-571. https://doi.org/10.1021/np0503552
  19. Mutak, S. (2007) Azalides from azithromycin to new azalide derivatives. J. Antibiot. 60, 85-122. https://doi.org/10.1038/ja.2007.10
  20. Niwa, H., Wakamatsu, K. and Yamada, K. (1989) Halicholactone and neohalicholactone, two novel fatty acid metabolites from the marine sponge Halichondria okadai Kadota. Tetrahedron Lett. 30, 4543-4546. https://doi.org/10.1016/S0040-4039(01)80740-1
  21. Parenty, A., Moreau, X., Niel, G. and Campagne, J. M. (2013) Update 1 of: macrolactonizations in the total synthesis of natural products. Chem. Rev. 113, PR1-PR40. https://doi.org/10.1021/cr300129n
  22. Pillaiyar, T., Manickam, M. and Jung, S. H. (2017) Downregulation of melanogenesis: drug discovery and therapeutic options. Drug Discov. Today 22, 282-298. https://doi.org/10.1016/j.drudis.2016.09.016
  23. Shiina, I. (2007) Total synthesis of natural 8- and 9-membered lactones: recent advancements in medium-sized ring formation. Chem. Rev. 107, 239-273. https://doi.org/10.1021/cr050045o
  24. Song, I., Gu, H., Han, H., Lee, N., Cha, J., Son, Y. and Kwon, J. (2018) Effects of 7-MEGATM 500 on oxidative stress, inflammation, and skin regeneration in H2O2-treated skin cells. Toxicol. Res. 34, 103-110. https://doi.org/10.5487/TR.2018.34.2.103
  25. van Tamelen, E. E., Dickie, J. P., Loomans, M. E., Dewey, R. S. and Strong, F. M. (1961) The chemistry of antimycin A. X. structure of the antimycins. J. Am. Chem. Soc. 83, 1639-1646. https://doi.org/10.1021/ja01468a023
  26. Zhu, W. and Gao, J. (2008) The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J. Investig. Dermatol. Symp. Proc. 13, 20-24. https://doi.org/10.1038/jidsymp.2008.8

Cited by

  1. Camellia japonica Essential Oil Inhibits α-MSH-Induced Melanin Production and Tyrosinase Activity in B16F10 Melanoma Cells vol.2021, 2021, https://doi.org/10.1155/2021/6328767