DOI QR코드

DOI QR Code

Regulation of mitochondrial morphology and metabolism by Jak-STAT pathway

  • 투고 : 2021.11.27
  • 심사 : 2021.12.16
  • 발행 : 2021.12.31

초록

Jak-STAT pathway is required for embryogenesis, female gametogenesis, cytokine-mediated neuroprotection, diabetes, obesity, cancer, stem cell, and various tissues. The noncanonical role of Jak-STAT in mitochondria function was supported by the detection of STAT protein in mitochondria, however, several studies show that STAT protein is detected in the endoplasmic reticulum (ER), and not in mitochondria. STAT protein may alter mitochondria function without entering mitochondria, this involves regulation of fission and fusion proteins to change mitochondria morphology. However, how changes in mitochondria morphology lead to changes in mitochondria metabolism needs further investigation.

키워드

참고문헌

  1. Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, Yoshida K, Sudo T, Naruto M, Kishimoto T. 1994. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77:63-71. https://doi.org/10.1016/0092-8674(94)90235-6
  2. Avalle L, Camporeale A, Morciano G, Caroccia N, Ghetti E, Orecchia V, Viavattene D, Giorgi C, Pinton P, Poli V. 2019. STAT3 localizes to the ER, acting as a gatekeeper for ER-mitochondrion Ca2+ fluxes and apoptotic responses. Cell Death Differ. 26:932-942. https://doi.org/10.1038/s41418-018-0171-y
  3. Avalle L and Poli V. 2018. Nucleus, mitochondrion, or reticulum? STAT3 a la carte. Int. J. Mol. Sci. 19:2820. https://doi.org/10.3390/ijms19092820
  4. Boulton TG, Stahl N, Yancopoulos GD. 1994. Ciliary neurotrophic factor/leukemia inhibitory factor/interleukin 6/oncostatin M family of cytokines induces tyrosine phosphorylation of a common set of proteins overlapping those induced by other cytokines and growth factors. J. Biol. Chem. 269:11648-11655. https://doi.org/10.1016/S0021-9258(19)78174-5
  5. Brillo V, Chieregato L, Leanza L, Muccioli S, Costa R. 2021. Mitochondrial dynamics, ROS, and cell signaling: a blended overview. Life (Basel) 11:332.
  6. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr. 1999. Stat3 as an oncogene. Cell 98:295-303. https://doi.org/10.1016/S0092-8674(00)81959-5
  7. Cho YM, Kwon S, Pak YK, Seol HW, Choi YM, Park DJ, Park KS, Lee HK. 2006. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem. Biophys. Res. Commun. 348:1472-1478. https://doi.org/10.1016/j.bbrc.2006.08.020
  8. Choi HW, Kim JH, Chung MK, Hong YJ, Jang HS, Seo BJ, Jung TH, Kim JS, Chung HM, Byun SJ, Han SG, Seo HG, Do JT. 2015. Mitochondrial and metabolic remodeling during reprogramming and differentiation of the reprogrammed cells. Stem Cells Dev. 24:1366-1373. https://doi.org/10.1089/scd.2014.0561
  9. Chowdhury SR, Saleh A, Akude E, Smith DR, Morrow D, Tessler L, Calcutt NA, Fernyhough P. 2014. Ciliary neurotrophic factor reverses aberrant mitochondrial bioenergetics through the JAK/STAT pathway in cultured sensory neurons derived from streptozotocin-induced diabetic rodents. Cell. Mol. Neurobiol. 34:643-649. https://doi.org/10.1007/s10571-014-0054-9
  10. Chun KS, Jang JH, Kim DH. 2020. Perspectives regarding the intersections between STAT3 and oxidative metabolism in cancer. Cells 9:2202. https://doi.org/10.3390/cells9102202
  11. Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A. 2007. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med. 4 Suppl 1:S60-S67. https://doi.org/10.1038/ncpcardio0766
  12. Darnell JE Jr, Kerr IM, Stark GR. 1994. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415-1421. https://doi.org/10.1126/science.8197455
  13. Dolcet X, Soler RM, Gould TW, Egea J, Oppenheim RW, Comella JX. 2001. Cytokines promote motoneuron survival through the Janus kinase-dependent activation of the phosphatidylinositol 3-kinase pathway. Mol. Cell. Neurosci. 18:619-631. https://doi.org/10.1006/mcne.2001.1058
  14. Ernst M and Jenkins BJ. 2004. Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet. 20:23-32. https://doi.org/10.1016/j.tig.2003.11.003
  15. Fix DK, VanderVeen BN, Counts BR, Carson JA. 2019. Regulation of skeletal muscle DRP-1 and FIS-1 protein expression by IL-6 signaling. Oxid. Med. Cell. Longev. 2019:8908457. https://doi.org/10.1155/2019/8908457
  16. Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE. 2009. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324:1713-1716. https://doi.org/10.1126/science.1171721
  17. Gurzov EN, Stanley WJ, Pappas EG, Thomas HE, Gough DJ. 2016. The JAK/STAT pathway in obesity and diabetes. FEBS J. 283:3002-3015. https://doi.org/10.1111/febs.13709
  18. Harbauer AB, Zahedi RP, Sickmann A, Pfanner N, Meisinger C. 2014. The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease. Cell Metab. 19:357-372. https://doi.org/10.1016/j.cmet.2014.01.010
  19. Ihle JN. 1996. STATs: signal transducers and activators of transcription. Cell 84:331-334. https://doi.org/10.1016/S0092-8674(00)81277-5
  20. Khan R, Lee JE, Yang YM, Liang FX, Sehgal PB. 2013. Live-cell imaging of the association of STAT6-GFP with mitochondria. PLoS One 8:e55426. https://doi.org/10.1371/journal.pone.0055426
  21. Kondoh H, Lleonart ME, Bernard D, Gil J. 2007. Protection from oxidative stress by enhanced glycolysis; a possible mechanism of cellular immortalization. Histol. Histopathol. 22:85-90.
  22. Lee JE, Seo BJ, Han MJ, Hong YJ, Hong K, Song H, Lee JW, Do JT. 2020. Changes in the expression of mitochondrial morphology-related genes during the differentiation of murine embryonic stem cells. Stem Cells Int. 2020:9369268.
  23. Levy DE and Lee CK. 2002. What does Stat3 do? J. Clin. Invest. 109:1143-1148. https://doi.org/10.1172/JCI15650
  24. Luo X, Ribeiro M, Bray ER, Lee DH, Yungher BJ, Mehta ST, Thakor KA, Diaz F, Lee JK, Moraes CT, Bixby JL, Lemmon VP, Park KK. 2016. Enhanced transcriptional activity and mitochondrial localization of STAT3 co-induce axon regrowth in the adult central nervous system. Cell Rep. 15:398-410. https://doi.org/10.1016/j.celrep.2016.03.029
  25. Macias E, Rao D, Carbajal S, Kiguchi K, DiGiovanni J. 2014. Stat3 binds to mtDNA and regulates mitochondrial gene expression in keratinocytes. J. Invest. Dermatol. 134:1971-1980. https://doi.org/10.1038/jid.2014.68
  26. Matthews VB and Febbraio MA. 2008. CNTF: a target therapeutic for obesity-related metabolic disease? J. Mol. Med. (Berl.) 86:353-361. https://doi.org/10.1007/s00109-007-0286-y
  27. Maycotte P, Marin-Hernandez A, Goyri-Aguirre M, Anaya-Ruiz M, Reyes-Leyva J, Cortes-Hernandez P. 2017. Mitochondrial dynamics and cancer. Tumour Biol. 39:1010428317698391.
  28. Meier JA and Larner AC. 2014. Toward a new STATe: the role of STATs in mitochondrial function. Semin. Immunol. 26:20-28. https://doi.org/10.1016/j.smim.2013.12.005
  29. Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood AM, Haugen E, Bracken CP, Rackham O, Stamatoyannopoulos JA, Filipovska A, Mattick JS. 2011. The human mitochondrial transcriptome. Cell 146:645-658. https://doi.org/10.1016/j.cell.2011.06.051
  30. Mohammed F, Gorla M, Bisoyi V, Tammineni P, Sepuri NBV. 2020. Rotenone-induced reactive oxygen species signal the recruitment of STAT3 to mitochondria. FEBS Lett. 594:1403-1412. https://doi.org/10.1002/1873-3468.13741
  31. Nan J, Hu H, Sun Y, Zhu L, Wang Y, Zhong Z, Zhao J, Zhang N, Wang Y, Wang Y, Ye J, Zhang L, Hu X, Zhu W, Wang J. 2017. TNFR2 stimulation promotes mitochondrial fusion via Stat3- and NF-kB-dependent activation of OPA1 expression. Circ. Res. 121:392-410. https://doi.org/10.1161/CIRCRESAHA.117.311143
  32. Phillips D, Reilley MJ, Aponte AM, Wang G, Boja E, Gucek M, Balaban RS. 2010. Stoichiometry of STAT3 and mitochondrial proteins: implications for the regulation of oxidative phosphorylation by protein-protein interactions. J. Biol. Chem. 285:23532-23536. https://doi.org/10.1074/jbc.C110.152652
  33. Prieto J, Leon M, Ponsoda X, Sendra R, Bort R, Ferrer-Lorente R, Raya A, Lopez-Garcia C, Torres J. 2016. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat. Commun. 7:11124. https://doi.org/10.1038/ncomms11124
  34. Rafalski VA, Mancini E, Brunet A. 2012. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. J. Cell Sci. 125:5597-5608. https://doi.org/10.1242/jcs.114827
  35. Rhee KD, Nusinowitz S, Chao K, Yu F, Bok D, Yang XJ. 2013. CNTF-mediated protection of photoreceptors requires initial activation of the cytokine receptor gp130 in Muller glial cells. Proc. Natl. Acad. Sci. U. S. A. 110:E4520-E4529.
  36. Schindler C and Darnell JE Jr. 1995. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem. 621-651.
  37. Shahni R, Cale CM, Anderson G, Osellame LD, Hambleton S, Jacques TS, Wedatilake Y, Taanman JW, Chan E, Qasim W, Plagnol V, Chalasani A, Duchen MR, Gilmour KC, Rahman S. 2015. Signal transducer and activator of transcription 2 deficiency is a novel disorder of mitochondrial fission. Brain 138:2834-2846. https://doi.org/10.1093/brain/awv182
  38. Sobinoff AP, Sutherland JM, Mclaughlin EA. 2013. Intracellular signalling during female gametogenesis. Mol. Hum. Reprod. 19:265-278. https://doi.org/10.1093/molehr/gas065
  39. Su Y, Huang X, Huang Z, Huang T, Xu Y, Yi C. 2020. STAT3 localizes in mitochondria-associated ER membranes instead of in mitochondria. Front. Cell Dev. Biol. 8:274. https://doi.org/10.3389/fcell.2020.00274
  40. Szczepanek K, Chen Q, Derecka M, Salloum FN, Zhang Q, Szelag M, Cichy J, Kukreja RC, Dulak J, Lesnefsky EJ, Larner AC. 2011. Mitochondrial-targeted Signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species. J. Biol. Chem. 286:29610-29620. https://doi.org/10.1074/jbc.M111.226209
  41. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, Kishimoto T, Akira S. 1997. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl. Acad. Sci. U. S. A. 94:3801-3804. https://doi.org/10.1073/pnas.94.8.3801
  42. Vander Heiden MG, Cantley LC, Thompson CB. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029-1033. https://doi.org/10.1126/science.1160809
  43. Vassilev AO, Lorenz DR, Tibbles HE, Uckun FM. 2002. Role of the leukemia-associated transcription factor STAT3 in platelet physiology. Leuk. Lymphoma 43:1461-1467. https://doi.org/10.1080/1042819022386716
  44. Vaupel P and Multhoff G. 2021. The Warburg effect: historical dogma versus current rationale. Adv. Exp. Med. Biol. 1269:169-177. https://doi.org/10.1007/978-3-030-48238-1_27
  45. Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC. 2009. Function of mitochondrial Stat3 in cellular respiration. Science 323:793-797. https://doi.org/10.1126/science.1164551
  46. Wiedemann N and Pfanner N. 2017. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86:685-714. https://doi.org/10.1146/annurev-biochem-060815-014352
  47. Zhang Q, He L, Dong Y, Fei Y, Wen J, Li X, Guan J, Liu F, Zhou T, Li Z, Fan Y, Wang N. 2020. Sitagliptin ameliorates renal tubular injury in diabetic kidney disease via STAT3-dependent mitochondrial homeostasis through SDF-1α/CXCR4 pathway. FASEB J. 34:7500-7519. https://doi.org/10.1096/fj.201903038R
  48. Zhang Q, Raje V, Yakovlev VA, Yacoub A, Szczepanek K, Meier J, Derecka M, Chen Q, Hu Y, Sisler J, Hamed H, Lesnefsky EJ, Valerie K, Dent P, Larner AC. 2013. Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation of serine 727. J. Biol. Chem. 288:31280-31288. https://doi.org/10.1074/jbc.M113.505057
  49. Zhong Z, Wen Z, Darnell JE Jr. 1994. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264:95-98. https://doi.org/10.1126/science.8140422