DOI QR코드

DOI QR Code

STS 440C 마르텐사이트계 스테인리스 강의 열처리에 따른 미세조직, 기계적 특성 및 부식 거동

Effect of Heat Treatment on Microstructure, Mechanical Property and Corrosion Behavior of STS 440C Martensitic Stainless Steel

  • 김민구 (전남대학교 공과대학 신소재공학부) ;
  • 이광민 (전남대학교 공과대학 신소재공학부)
  • Kim, Mingu (School of Materials Science and Engineering School, Chonnam National University) ;
  • Lee, Kwangmin (School of Materials Science and Engineering School, Chonnam National University)
  • 투고 : 2020.11.20
  • 심사 : 2020.12.19
  • 발행 : 2021.01.27

초록

Martensitic stainless steel is commonly used in the medical implant instrument. The alloy has drawbacks in terms of strength and wear properties when applied to instruments with sharp parts. 440C STS alloy, with improved durability, is an alternative to replace 420 J2 STS. In the present study, the carbide precipitation, and mechanical and corrosion properties of STS 440C alloy are studied as a function of different heat treatments. The STS 440C alloy is first austenitized at different temperatures; this is immediately followed by oil quenching and sub-zero treatment. After sub-zero treatment, the alloy is tempered at low temperatures. The microstructures of the heat treated STS 440C alloy consist of martensite and retained austenite and carbides. Using EDX and SADP with a TEM, the precipitated carbides are identified as a Cr23C6 carbide with a size of 1 to 2 ㎛. The hardness of STS 440C alloy is improved by austenitization at 1,100 ℃ with sub-zero treatment and tempering at 200 ℃. The values of Ecorr and Icorr for STS 440C increase with austenitization temperature. Results can be explained by the dissolution of Cr-carbide and the increase in the retained austenite. Sub-zero treatment followed by tempering shows a little difference in the properties of potentiodynamic polarizations.

키워드

참고문헌

  1. A. N. Isfahany, H. Saghafian and G. Borhani, J. Alloys Compd., 509, 3931 (2011). https://doi.org/10.1016/j.jallcom.2010.12.174
  2. T. Tsuchiyama, J. Tobata, T. Tao, N. Nakada and S. Takaki, Mater. Sci. Eng., A, 532, 585 (2012). https://doi.org/10.1016/j.msea.2011.10.125
  3. H. H. Lu, H. K. Guo, W. G. Zhang and W. Liang, Mater. Lett., 240, 275 (2019). https://doi.org/10.1016/j.matlet.2019.01.029
  4. A. N. Isfahany, H. Saghafian and G. Borhani, J. Alloys Compd., 509, 3931 (2011). https://doi.org/10.1016/j.jallcom.2010.12.174
  5. M. Albertini, M. Herrero-Climent, P. Lazaro, J. V. Rios and F. J. Gil, Mater. Lett., 79, 163 (2012). https://doi.org/10.1016/j.matlet.2012.04.006
  6. C. J. Scheuer, F. Possoli, P. C. Borges, R. P. Cardoso and S. F. Brunatto, Electrochim. Acta, 317, 70 (2019). https://doi.org/10.1016/j.electacta.2019.05.101
  7. A. A. Salih, M. Z. Omar, S. Junaidi and Z. Sajuri, Aust. J. Basic Appl. Sci., 5, 867 (2011).
  8. J. R. Yang, T. H. Yu and C. H. Wang, Mater. Sci. Eng. A, 438-440, 276 (2006). https://doi.org/10.1016/j.msea.2006.02.098
  9. C. T. Kwok, K. H. Lo, F. T. Cheng and H. C. Man, Surf. Coat. Technol., 166, 221 (2003). https://doi.org/10.1016/S0257-8972(02)00782-X
  10. S. H. Salleh, M. Z. Omar, J. Syarif, M. J. Ghazali, S. Abdullah and Z. Sajuri, Int. J. Mech. Mater. Eng., 4, 123 (2009).
  11. M. A. Neri and R. Colas, Mater. Charact., 47, 283 (2001). https://doi.org/10.1016/S1044-5803(01)00189-9
  12. C. G. De Andres, G. Caruana and L. F. Alvarez, Mater. Sci. Eng., A, 241, 211 (1998). https://doi.org/10.1016/S0921-5093(97)00491-7
  13. Z. X. Xia, C. Zhang and Z. G. Yang, Mater. Sci. Eng., A, 528, 6764 (2011). https://doi.org/10.1016/j.msea.2011.05.084
  14. S. Y. Lu, K. F. Yao, Y. B. Chen, M. H. Wang, X. Liu and X. Ge, Electrochim. Acta, 165, 45 (2015). https://doi.org/10.1016/j.electacta.2015.02.038
  15. A. F. Candelaria and C. E. Pinedo, J. Mater. Sci. Lett., 22, 1151 (2003). https://doi.org/10.1023/A:1025179128333
  16. A. Rajasekhar, G. Madhusudhan Reddy, T. Mohandas and V. S. R. Murti, Mater. Des., 30, 1612 (2009). https://doi.org/10.1016/j.matdes.2008.07.042
  17. L. Ning, D. Zhonggang and H. Menggen, Mater. Sci. Technol., 7, 1057 (1991). https://doi.org/10.1179/026708391790182845
  18. J. Y. Park and Y. S. Park, Mater. Sci. Eng., A, 448-451, 1131 (2007). https://doi.org/10.1016/j.msea.2006.03.134
  19. J. Y. Park and Y. S. Park, Corrosion, 62, 541 (2006). https://doi.org/10.5006/1.3279913