DOI QR코드

DOI QR Code

Applying Rosen-type PZT plasma generation device for medical applications

로젠형 압전변압기를 적용한 의료융합 플라즈마기기

  • Received : 2020.11.04
  • Accepted : 2021.01.20
  • Published : 2021.01.28

Abstract

In the medical field, applications of plasma are applied sterilize instruments mainly but with the advent of bio-plasma technology, the scope of application is expanding. Recently, In addition, high-density miniaturization with handheld is required for sophisticated procedures when irradiated directly or treated with non-standard conditions. Rosen-type PZT is a device with a structure that generates high voltage plasma by achieving voltage transformation through electro-mechanical coupling using piezoelectric effect.and is used in portable plasma generating devices as an advantage to increase energy density relatively. In this paper, Rosen-type PZT was modeled using equivalent circuits and was carried out and a plasma generating device for medical application was designed and prototype tested. Prototype plasma generating device generates an output voltage of 5.8 kV with 12V input power and is designed to operate at high voltage by applying the half-bridge topology power converter. The results of the study confirmed the availability of various medical devices, such as plasma jets or direct exposure equipment.

이온화된 기체인 플라즈마의 의료분야에서 적용은 현재 주로 살균분야에 국한되어 적용되고 있지만 바이오플라즈마기술의 등장으로 그 응용범위가 확대되고 있는 실정이다. 또한, 인체에 직접 조사하거나 비열처리하는 경우에는 정교한 시술을 위해 핸드헬드가 가능한 고밀도 소형화가 요구된다. 변압기로 인한 전자기파 영향이 없고 소형으로 구현이 가능한 형태의 로젠형 압전변압기는 압전효과를 이용한 전기-기계 커플링을 통해 전압변환을 달성하며 상대적으로 에너지밀도를 높일 수 있는 장점으로 휴대용 플라즈마 발생장치에 이용되고 있다. 본 논문에서는 로젠형 압전변압기의 등가회로를 이용한 모델링을 수행하고, 의료용으로 적용가능한 형태의 플라즈마 발생장치를 설계 및 제작하였다. 이를 위해 플라즈마 발생 모듈은 12V 입력전원으로 5.8kV의 출력전압을 발생시키도록 하프브리지 커버터 토폴로지 전력변환장치를 적용하여 고전압 동작하도록 설계하였다. 설계를 통해 제작된 프로토타입을 통해 의료용합형 플라즈마 기기로의 활용가능성에 대해 확인하였고, 이러한 연구결과를 통해 플라즈마 제트 또는 직접조사용 등의 다양한 의료기기로서의 역할을 확보할 것으로 사료된다.

Keywords

Acknowledgement

This study was supported by research funds from Nambu University, 2019.

References

  1. M. Babija, T. Gotszalka, Z.W. Kowalskia, K. Nitscha, J. Silberringb & M. Smoluchb (2014). Atmospheric Pressure Plasma Jet for Mass Spectrometry. Proc. of the 8th International Conference NEET 2013, Zakopane, Poland, 1821-2013. DOI: 10.12693/APhysPolA.125.1260
  2. M. J. Johnson, D. R. Boris, T. B. Petrova & S. G. Walton. (2019). Characterization of a Compact, Low-Cost Atmospheric-Pressure Plasma Jet Driven by a Piezoelectric Transformer. IEEE Transactions on Plasma Science. 47(1), 434-444. DOI: 10.1109/TPS.2018.2870345
  3. C. Nadal, F. Pigache & J. Erhart. (2016). Modeling of a Ring Rosen-Type Piezoelectric Transformer by Hamilton's Principle. Actuators 2016, 5-12. DOI: 10.1109/TUFFC.2014.006719
  4. D. Vasic, F. Costa & E. Sarraute. (2006). Piezoelectric Transformer for Integrated MOSFET and IGBT Gate Driver. IEEE TRANSACTIONS ON POWER ELECTRONICS, 21(1), 56-65. DOI: 10.1109/TPEL.2005.861121
  5. G. Spiazzi & S. Buso (2004), Analysis of Instabilities in Piezoelectric Transformers Driving Cold Cathode Fluorescent Lamps. 2004 35th Annual IEEE Power Electronics Specialists Conference. 2725-2730. DOI: 10.1109/PESC.2004.1355263
  6. PIEZO TECHNOLOGY. (2002). Piezoelectric Ceramic Products FUNDAMENTALS, CHARACTERISTICS AND APPLICATIONS, PI Ceramic GmbH. https://www.piceramic.com/
  7. S. J. Choi, K. C. Lee & B. H. Cho. (2005). Design of Fluorescent Lamp Ballast With PFC Using a Power Piezoelectric Transformer. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 52(6). 1573-1581. DOI: 10.1109/TIE.2005.858726
  8. M. S. Roedgaard, M. Weirich & M. A. E. Andersen. (2011). Forward Conduction Mode Controlled Piezoelectric Transformer based PFC LED Drive. IEEE transactions on power electronics, 28(10), 4841-4849. DOI: 10.1109/TPEL.2012.2233499
  9. M. S. Rodgaard, T. Andersen, M. A. E. Andersen & K. S. Meyer. (2012). Design of Interleaved Interdigitated Electrode Multilayer Piezoelectric Transformer utilizing Longitudinal and Thickness Mode Vibrations. IEEE International Conference on Power and Energy (PECon), 2-5. DOI: 10.1109/PECon.2012.6450243
  10. P. Anipireddy1 & C. Babu. (2014). Modeling and Simulation of Three Level Piezoelectric Transformer Converters. Anipireddy and Babu, Adv Robot Autom 2013, 3(2). DOI: 10.4172/2168-9695.1000120
  11. C. Tendero, C. Tixiera, P. Tristanta, J. Desmaisona & P. Leprince. (2006). Atmospheric pressure plasmas: A review, Atomic Spectroscopy, 61(1), 2006, 2-30. https://doi.org/10.1016/j.sab.2005.10.003
  12. L. Gan, S. Zhang, D. Poorun, D. Liu, X. Lu, M. He, X. Duan & H. Chen. (2018). Medical applications of nonthermal atmospheric pressure plasma in dermatology, JDDG, J. Deutschen Dermatol. Gesellschaft, 16(1), 7-13. DOI: 10.1111/ddg.13373
  13. Y. Yang & L. Tang. (2009). Equivalent Circuit Modeling of Piezoelectric Energy Harvesters, JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 20, 2223-2235. DOI: 10.1177/1045389X09351757
  14. C. Covaci & A. Gontean. (2020). Piezoelectric Energy Harvesting Solutions: A Review, Sensors 2020, 20, 1-37. DOI: 10.3390/s20123512
  15. A. Bybi, H. Drissi, M. Garoum & A. C. Hladky-Hennion. (2019). One-Dimensional Electromechanical Equivalent Circuit for Piezoelectric Array Elements. Advances in Science. Technology & Innovation, 3-9. DOI: 10.1007/978-3-030-05276-8_1