DOI QR코드

DOI QR Code

Numerical Simulation of Productivity of Metal Powder Spray Granulation Process Using Discrete Element Method

이산요소법을 이용한 금속 분말 분무 과립화 공정의 생산성 시뮬레이션 연구

  • Son, Kwon Joong (Department of Mechanical and Design Engineering, Hongik University)
  • 손권중 (홍익대학교 기계정보공학과)
  • Received : 2020.11.09
  • Accepted : 2021.01.20
  • Published : 2021.01.28

Abstract

A powder metallurgy process with granules is the manufacturing technology that can achieve higher-density sintered parts than conventional powder metallurgy processes. However, there is a disadvantage in that the production cost increases significantly due to the additional granulation step. High granule productivity must be guaranteed for affordable material costs in this manufacturing technology. This paper performed a series of scattering, collision, and adhesion simulations of agglomerated powders to investigate the characteristics of granulation process affecting the manufacturing yield rate. The results of this simulation-based convergence study can contribute to improving productivity in the metal powder spray granulation process.

과립 분말 야금법은 기존 분말 야금법보다 치밀도가 높은 소결 부품을 얻을 수 있는 제조 기술이다. 하지만 추가 과립화 공정에 따른 생산 비용 증가가 상당하다는 단점이 있다. 과립 분말 야금법의 생산성 향상을 위해서는 과립 분말 제조 시 높은 회수율이 보장되어야 한다. 본 논문에서는 분체 동역학 전산 해석법인 이산요소법을 이용하여 과립 분말의 수율에 영향을 미치는 과립화 공정의 특성에 대해 살펴보았다. 분무 과립 공정 중 과립화 분말의 비산, 충돌 및 소착 현상을 시뮬레이션함으로써 분무 건조기의 운전 조건에 따른 과립화 분말의 파손 및 회수 가능 여부를 예측하였다. 본 논문의 가상 공정 시뮬레이션 융합 연구 결과는 실제 금속 분말의 분무 과립화 공정의 생산성 향상에 이바지할 것으로 기대한다.

Keywords

References

  1. K. Kondoh. (2012). Powder Metallurgy. Rijeka : InTech. DOI : 10.5772/1922
  2. F. Thummler & R. Oberacker. (1993). An Introduction to Powder Metallurgy. London : The Institute of Materials.
  3. D. Heaney (2019). Handbook of Metal Injection Molding. Cambridge: Woodhead Publishing.
  4. T. Kadomura, Y. Maeta & I. Otsuka. (2006). Development of Granulated Powders by SUS316L Ultra Fine Powder. Proceedings of the 2006 Powder Metallurgy World Congress. (pp. 733-734). Seoul : Korean Powder Metallurgy Institute.
  5. H. Toyoshima, M. Kusunoki & I. Otsuka. (2006). Sintering Properties of High-Pressure Water Atomized SUS 316L Ultra Fine Powder. Proceedings of the 2006 Powder Metallurgy World Congress. (pp. 769-770). Seoul : Korean Powder Metallurgy Institute.
  6. M. Roseane et al. (2017). Production of Nickel Matrix Composites Reinforced with Carbide Particles by Granulation of Fine Powders and Mechanical Pressing. Powder Technology, 305, 673-678. DOI : 10.1016/j.powtec.2016.10.053
  7. J. P. Choi, G. Y. Lee, J. I. Song, W. S. Lee & J. S. Lee. (2015). Sintering Behavior of 316L Stainless Steel Micro-Nanopowder Compact Fabricated by Powder Injection Molding. Powder Technology, 279, 196-202. DOI : 10.1016/j.powtec.2015.04.014
  8. A. D. Salman, M. J. Hounslow & J. P. K. Seville. (2007). Granulation. Amsterdam : Elsevier.
  9. J. Litster & B. Ennis. (2004). The Science and Engineering of Granulation Processes. Berlin : Springer Science & Bussiness Media DOI : 10.1007/978-94-017-0546-2
  10. H. R. Norouzi, R. Zarghami, R. Sotudeh-Gharebagh & N. Mostoufi. (2016). Coupled CFD-DEM Modeling: Formulation, Implementation and Application to Multiphase Flows. Chichester : John Wiley & Sons. DOI : 10.1002/9781119005315
  11. K. J. Son. (2018). A Numerical Study of the Influence of Rheology of Cohesive Particles on Blade Free Planetary Mixing. Korea-Australia Rheology Journal, 30(3), 199-209. DOI : 10.1007/s13367-018-0020-z
  12. K. J. Son. (2019). A Numerical Study of the Influence of Operating Conditions of a Blade Free Planetary Mixer on Blending of Cohesive Powders. Korea-Australia Rheology Journal, 31(1), 15-23. DOI : 10.1007/s13367-019-0002-9
  13. K. J. Son. (2018). A Discrete Element Model for the influence of Surfactants on Sedimentation Characteristics of Magnetorheological Fluids. Korea-Australia Rheology Journal, 30(1), 29-39. DOI : 10.1007/s13367-018-0004-z
  14. K. J. Son. (2020). Performance Evaluation of Multi-Degree-of-Freedom Robotic Mixer using Discrete Element Mixing Simulations. Journal of the Korea Convergence Society, 10(10), 117-122. DOI : 10.15207/JKCS.2020.11.10.219
  15. K. S. Kim. (2019). Simulation of Membrane Sloshing Tank by Using MPS. Journal of the Korea Convergence Society, 11(10), 219-224. DOI : 10.15207/JKCS.2019.10.10.117
  16. L. Fries, S. Antonyuk, S. Heinrich & S. Palzer. (2011). DEM-CFD Modeling of a Fluidized Bed Spray Granulator. Chemical Engineering Science, 66, 2340-2355. DOI : 10.1016/j.ces.2011.02.038