DOI QR코드

DOI QR Code

Seismic-performance Experiments of Circular Shear Piers Considering Effects of Rebar Corrosion, Lap splice and Axial Load

철근부식, 겹침이음 및 축하중의 영향을 고려한 원형 전단 교각의 내진성능실험

  • 이수형 (국민대학교 건설시스템공학부) ;
  • 이승건 (국민대학교 건설시스템공학부) ;
  • 이혜린 (국민대학교 건설시스템공학부) ;
  • 홍기증 (국민대학교 건설시스템공학부)
  • Received : 2021.10.20
  • Accepted : 2021.11.24
  • Published : 2021.12.31

Abstract

The corroded pier that has corrosion of the tranverse steel, main steel and lapsplice directly affects the seismic performance. The corrosion of the tranvese and main steel directly reduce the shear strength and bendig strength. If steel corrosion occurs in lap splice, the flexural strength and flexibility of existing corroded pier that are not seismic design are significantly reduced. In addition, as the axial force acting on the pier increase the shear strength. Considering these effects. In this stuydy, we cosidered steel corrosion, lap splice and axial force, for a reasonable evaluation of seismic-performance. It is confirmed that flexular failure occurs at pies where shear failure is expected to occur due to corrosion of reinforcement. These failure modes and their reason are analyzed, and necessary considerations are presented for seismic reinforcement.

노화된 교각의 횡철근, 주철근, 겹침이음의 철근부식은 교각의 내진성능에 직접적인 영향을 끼친다. 횡철근 및 주철근의 철근부식은 교각의 전단강도 및 휨강도를 각각 직접적으로 감소시킨다. 겹침이음에 철근부식이 생긴다면, 특히 내진설계되지 않은 기존 노후 교각의 휨강도 및 휨연성을 상당히 감소시킨다. 더불어, 교각에 작용하는 축하중이 증가하면 교각의 전단강도가 증가하게 된다. 이러한 영향들을 고려하여, 본 연구에서는 노화를 고려한 합리적인 내진성능평가를 위해, 앞서 언급한 철근부식, 겹침이음, 축하중이 형상비 2이하인 교각의 전단거동과 휨거동에 어떠한 영향을 미치는지 실험을 통해 확인한다. 철근부식으로 인해 전단파괴가 일어날 것으로 예상되는 교각에서 오히려 휨파괴가 발생하는 것을 확인한다. 이러한 파괴모드와 그 원인을 분석하고 내진보강 시 필요한 고려사항을 제시하였다.

Keywords

Acknowledgement

본 연구는 국토교통부 건설기술연구사업의 연구비지원(21SCIP-B146946-04)에 의해 수행되었습니다. 이에 감사드립니다.

References

  1. Cho, K. I., Cho, C. B., Kim, J. R., Kim, Y. J., and Kim, B. S. (2002), Seismic Performance Evaluation of Shear-Flexure RC Piers through Comparative test of Real Scale and Reduced Scale Model, Proceedings of the Korea Concrete Institute Conference, Korea Concrete Institute, 849-854.
  2. Song, H. J., Chung, Y.S., Kim, Y. G., Kim, H., and Kim, D. H. (2002), Seismic Performance of Flexural-Shear Circular Reinforced Concrete Bridge Piers, Proceedings of the Korea Concrete Institute Conference, Korea Concrete Institute, 823-828.
  3. Kim, W. H., Shin, H. M., and Kim, T. H. (2003), Seismic Performance Evaluation of Reinforced Concrete Bridge Columns under Varying Axial Force, Journal of the Earthquake Engineering Society of Korea, Earthquake Engineering Society of Korea, 67-73.
  4. Cho, C. B., Sin, H. J., Kwak, I. J., and Chung, Y. S. (2012), Seismic Performance Analysis of RC Piers with Lap-spliced Reinforced Steel and Differentiated Aspect Ratios, Journal of the Earthquake Engineering Society of Korea, Earthquake Engineering Society of Korea, 41-53.
  5. Lee, B. K., Lee, K. S., Jung, J. S., Kim, I. K., and Jung, W. H. (2019), Seismic Performance Reduction of Controlled by Shear Considering Their Corrosion of Reinforcing Bars, Proceeding of Annual Conference of the Architectural Institute, Architectural Institute of Korea, 217-218.
  6. KDS 24 14 21 (2019), Concrete Bridge Design Specification (Limit State Design), Korea, Ministry of Construction and Transportation, Korea, 110-111.
  7. KDS 14 20 52 (2021), Standard Specifications For Concrete Structure, Ministry of Consrtuction and Transportation, Korea, , 27-33.
  8. G. Fajardo, G. Escadeillas, G. Arliguie (2006), Electrochemical chloride extraction (ECE) from steel-reinforcement concrete specimens contaminated by "artificial" sea-water, ELSEVIER, Corrosion science 48, 110-125. https://doi.org/10.1016/j.corsci.2004.11.015
  9. KDS 24 17 11 (2018), Korea Highway Bridge Design Specification (Limit State Design), Ministry of Consrtuction and Transportation, Korea, 34-36.