DOI QR코드

DOI QR Code

Seismic-performance Flexural Experiments for Real Scale Piers with Circular Cross-section Considering Aging Effects

노후도를 고려한 실크기 원형단면 교각의 내진성능 휨실험

  • 이승건 (국민대학교 건설시스템공학부) ;
  • 이수형 (국민대학교 건설시스템공학부) ;
  • 이혜린 (국민대학교 건설시스템공학부) ;
  • 홍기증 (국민대학교 건설시스템공학부)
  • Received : 2021.10.22
  • Accepted : 2021.12.02
  • Published : 2021.12.31

Abstract

For old piers constructed when seismic design code had not been developed, lap splices usually exist in plastic hinge region. Corrosion of rebars causes decreasement in cross-sectional area of rebar and deterioration of lap-splice behaviour, thereby reducing the seismic performance of the old piers. In this research, according to these characteristics of old piers, test specimens are designed and manufactured considering rebar corrosion, lap splice, seismic design details, and seismic reinforcement. These effects are investigated through experiments. As a result of these experiment, rebar corrosion as well as lap splice reduces displacement ductility. When seismic design details or steel-plate reinforcement are applied, sufficient displacement ductility is expressed. For non-seismically designed specimens, loosening of the lap splice of transverse rebars caused buckling of longitudinal rebars and crushing of core concrete in plastic hinge region . For seismically designed specimen, area-reducing and untying of transverse rebars due to corrosion of rebars caused buckling of longitudinal rebars and crushing of core concrete.

노후 교각은 내진설계가 적용되지 않아 소성힌지구역에 겹침이음이 대다수 존재한다. 철근부식은 철근 단면적 감소 및 겹침이음부의 거동저하를 유발하여 교각의 내진성능을 저하시킨다. 본 연구에서는 이러한 노후교각의 특성에 따라 철근부식, 겹침이음, 내진설계 및 내진 보강 여부를 고려하여 실험체를 설계 및 제작하고 실험을 통해 그 영향을 조사하였다. 실험결과, 겹침이음 또는 철근부식은 변위연성도를 감소시킨다. 내진설계 상세 또는 강판 내진보강을 적용하면 충분한 변위연성도가 확보됨을 확인하였다. 모든 비내진실험체는 소성힌지구역 내의 횡철근 겹침이음부의 풀림으로 인해 주철근 좌굴과 심부콘크리트 압축파쇄가 발생하였다. 내진설계된 실험체는 철근부식에 의한 소성힌지구역 내 횡철근의 단면감소와 갈고리 풀림에 의해 주철근 좌굴 및 심부콘크리트 압축파쇄가 발생하였다.

Keywords

Acknowledgement

본 연구는 국토교통부 건설기술연구사업의 연구비지원(21SCIP-B146946-04)에 의해 수행되었습니다. 이에 감사드립니다.

References

  1. Park, I. J. (2017), History of Earthquakes in Korea and Future Prospects. Korean Fire Protection Association, 1(163).
  2. Jeon, Y. S., Park, E. H., Lee, D. K. (2017), 9.12 Earthquake Response Report. the Meteorological Administration of Korea, 11-1360000-001416-01.
  3. Chung, Y. S., Han, K. H., Lee, K. K., Lee, D. H. (1999), Quasi-Static Tests for Seismic Performance of Circular Hollow R.C. Bridge Piers, Journal of the Earthquake Engineering Society of Korea, 3(2), 41-54.
  4. Lee, H. S. (2001), Effect of hoot corrosion on axial compression behavior of reinforced concrete short columns, Proceedings of Korea institute for Structural Maintenance and inspection, 5(2), 317-320.
  5. Kim, T. H., Park, H. Y., Kim, B. S., Shin, H. M. (2003), Seismic Performance Evaluation of Reinforced Concrete Bridge Piers with Lap Splices, Journal of the Earthquake Engineering Society of Korea, 7(3), 31-38. https://doi.org/10.5000/EESK.2003.7.3.031
  6. Park, K. S., Joo, H. S., Shin, H. M., Kim, K. M. (2008), Displacement Ductility Ratio of Reinforced Concrete Bridge Piers with Lap-splices, Journal of the Earthquake Engineering Society of Korea, 12(6), 1-12. https://doi.org/10.5000/EESK.2008.12.6.001
  7. Cho, C. B., Shin, H. J., Gwak, I. J., Chung, Y. S. (2012), Seismic Performance Analysis of RC Piers with Lap-spliced Reinforced Steel and Differentiated Aspect Ratios, Journal of the Earthquake Engineering Society of Korea, 16(5), 41-53 https://doi.org/10.5000/EESK.2012.16.5.041
  8. Ko, S. H. (2013), Seismic Performance and Flexural Over-strength of Circular RC Column, Journal of Korea institute for Structural Maintenance and Inspection, 17(5), 49-58. https://doi.org/10.11112/JKSMI.2013.17.5.049
  9. Ko, S. H. (2020), Failure Behavior of Non-seismic RC Column with aspect ratio of 4.0, Journal of Korea institute for Structural Maintenance and Inspection, 24(6), 59-66. https://doi.org/10.11112/JKSMI.2020.24.6.59
  10. Eo, S. H., Lee, C. H., Lee, S. J. (2014), .Flexural Behavior of Reinforced Concrete Beams Considering Steel Corrosion, Journal of the Korea Academia-Industrial Cooperation Society, 15(5), 3251-3259. https://doi.org/10.5762/KAIS.2014.15.5.3251
  11. Nam, S. U., Song, H. B., Yi, W. H., Tae, K. H., Kang, D. E., Yang, W. J. (2008), Behaviour of the Reinforced Concrete under Corrosion of the Reinforcement, Proceedings of Korea instute of registered Architects, 28(1), 251-254.
  12. Chung, L., Cho, S. H., Kim, J. H., Yi, S. T. (2004), Correction factor suggestion for ACI development length provisions based on flexural testing of RC slabs with various levels of corroded reinforcing bars, ELSEVIER, Engineering structure 26, 1013-1026. https://doi.org/10.1016/j.engstruct.2004.01.008
  13. Ministry of Land, Infrastructure and Transport. (2021), Standard Specification for Concrete Structures, Korea Concrete Institue (KCI), KDS 14 20 52, 27-33
  14. Korean Institue of Bridge and structural Engineers; Korea Bridge Design & Engineer Research Center (2015), Explanation of Korea Highway Bridge Design Specification (Limit State Design), Construction information company, 5-200., 8-66
  15. G. Fajardo, G. Escadeillas, G. Arliguie (2004), Electrochemical chloride extraction(ECE) from steel-reinforcement concrete specimens contaminated by "artificial" sea-water, ELSEVIER, Corrosion science 48, 110-125. https://doi.org/10.1016/j.corsci.2004.11.015
  16. Ministry of Land, Transport and Maritime Affairs. (2011), Seismic Assessment and Retrofitting Guidelines for Bridges, Korea Infrastructure Safety and Technology Corporation, 43-53