DOI QR코드

DOI QR Code

Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC

고분자 전해질 연료전지 금속분리판용 316L 스테인리스강의 양극작동조건에서 염화물 농도에 따른 부식 특성

  • Shin, Dong-Ho (Graduate School, Mokpo National Maritime University) ;
  • Kim, Seong-Jong (Division of Marine Engineering, Mokpo National Maritime University)
  • 신동호 (목포해양대학교 대학원) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2021.11.09
  • Accepted : 2021.12.12
  • Published : 2021.12.31

Abstract

The interest in eco-friendly energy is increasing, and polymer electrolyte membrane fuel cell (PEMFC) is attracting attention as alternative power sources. Research on metallic bipolar plates, a fuel cell component, is being actively conducted. However, since the operating conditions of PEMFC, in which sulfuric acid (H2SO4) and hydrofluoric acid (HF) are mixed, are strong acidity, the durability of the metallic bipolar plate is very important. In this research, the electrochemical characteristics and corrosion damage behavior of 316L stainless steel, a material for metallic bipolar plates, were analyzed through potentiostatic corrosion tests with test times and chloride concentrations. As the test times and chloride concentrations increased, the current density and corrosion damage increased. As a result of observation with scanning electron microscope(SEM) and 3D microscope, both the depth and width of pitting corrosion increased with increases in test times and chloride concentrations. In particular, the pitting corrosion damage depth at test conditions of 6 hours and 1000 ppm chloride increased the most. The growth of the pitting corrosion damage was not directly proportional to time and increased significantly after a certain period.

Keywords

References

  1. A. Hermann, T. Chaudhuri, and P. Spagnol, Bipolar plates for PEM fuel cells: A review, International Journal of Hydrogen Energy, 30, 1297 (2005). Doi: https://doi.org/10.1016/j.ijhydene.2005.04.016
  2. S. H. Lee, J. S. Kim, N. H. Kang, H. H. Jo, and D. H. Nam, Surfce Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate, Journal of The Korean Institute of Surface Engineering, 44, 226 (2011). Doi: https://doi.org/10.5695/JKISE.2011.44.5.226
  3. A. Pozio, F. Zaza, A. Masci, and R. F. Silva, Bipolar plate materials for PEMFCs : A conductivity and stability study, Journal of Power Sources, 179, 631 (2008). Doi: https://doi.org/10.1016/j.jpowsour.2008.01.038
  4. M. P. Brady, H. Wang, B. Yang, J. A. Turner, M. Bordignon, R. Molins, M. A. Elhamid, L. Lipp, and L. R. Walker, Growth of Cr-Nitrides on commercial Ni-Cr and Fe-Cr base alloys to protect PEMFC bipolar plates, International Journal of Hydrogen Energy, 32, 3778 (2007). Doi: https://doi.org/10.1016/j.ijhydene.2006.08.044
  5. R. A. Antunes, M. C. L. Oliveira, G. Ett, and V. Ett, Corrosion of metal bipolar plates for PEM fuel cells: A review, International Journal of Hydrogen Energy, 35, 3632 (2010). Doi: https://doi.org/10.1016/j.ijhydene.2010.01.059
  6. D. P. Davies, P. L. Adcock, M. Turpin, and S. J. Rowen, Stainless steel as a bipolar plate material for solid polymer fuel cells, Journal of Power Sources, 86, 237 (2000). Doi: https://doi.org/10.1016/S0378-7753(99)00524-8
  7. R. C. Makkus, A. H. H. Janssen, F. A. de Bruijn, and R. K. A. M. Mallant, Use of stainless steel for cost competitive bipolar plates in the SPFC, Journal of Power Sources, 86, 274 (2000). Doi: https://doi.org/10.1016/S0378-7753(99)00460-7
  8. Y. Yang, L. J. Guo, and H. Liu, Corrosion characteristics of SS316L as bipolar plate material in PEMFC cathode environments with different acidities, International Journal of Hydrogen Energy, 36, 1654 (2011). Doi: https://doi.org/10.1016/j.ijhydene.2010.10.067
  9. R. F. Zhang, D. J. Yang, H. Zhu, and C. M. Zhang, Research on Potentiostatic Accelerated Test Method for Fuel Cell Metal Bipolar Plate, Journal of The Electrochemical Society, 89, 3 (2019). Doi: https://doi.org/10.1149/08907.0003ecst
  10. N. Kumar, G. P. Shaik, S. Pandurangan, B. Khalkho, L. and Neelakantan, R. Chetty, Corrosion characteristics and fuel cell performance of a cost-effective high Mn-Low Ni austenitic stainless steel as an alternative to SS 316L bipolar plate, International Journal of Energy Research, 44, 1 (2020). Doi: https://doi.org/10.1002/er.5422
  11. H. Wang, M. A. Sweikart, and J. A. Turner, Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells, Journal of Power Sources, 115, 243 (2003). Doi: https://doi.org/10.1016/S0378-7753(03)00023-5
  12. I. H. Oh, and J. B. Lee, Corrosion Behaviors of 316L Stainless Steel Bipolar Plate of PEMFC and Measurements of Interfacial Contact Resistance(ICR) between Gas Diffusion Layer(GDL) and Bipolar Plate, Corrosion Science and Technology, 9, 129 (2010). Doi: https://doi.org/10.14773/cst.2010.9.3.129
  13. L. F. Lin, C. Y. Chao, and D. D. Macdonald, A Point Defect Model for Anodic Passive Films: II . Chemical Breakdown and Pit Initiation, Journal of The Electrochemical Society, 128, 1194 (1981). Doi: https://doi.org/10.1149/1.2127592
  14. I. Olefjord, B. Brox, and U. Jelestam, Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA, Journal of The Electrochemical Society, 132, 2854 (1985). Doi: https://doi.org/10.1149/1.2113683
  15. Z. Wang, A. Seyeux, S. Zanna, V. Maurice, and P. Marcus, Chloride-induced alterations of the passive film on 316L stainless steel and blocking effect of pre-passivation, Electrochimica Acta, 329, 135159 (2020). Doi: https://doi.org/10.1016/j.electacta.2019.135159
  16. L. R. Hilbert, D. B. Ravn, J. Kold, and L. Gram, Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance, International Biodeterioration & Biodegradation, 52, 175 (2003). Doi: https://doi.org/10.1016/S0964-8305(03)00104-5
  17. G. T. Burstein, and S. P. Vines, Repetitive Nucleation of Corrosion Pits on Stainless Steel and the Effects of Surface Roughness, Journal of The Electrochemical Society, 148, 504 (2001). Doi: https://doi.org/10.1149/1.1416503
  18. ASTM G46-94, Standard Guide for Examination and Evaluation of Pitting Corrosion, p. 5, ASTM International, West Conshohocken, PA (2005).
  19. ASTM G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, P.7, ASTM International, West Conshohocken, PA (2004).
  20. I. J. Jang, K. T. Kim, Y. R. Yoo, and Y. S Kim, Effects of Ultrasonic Amplitude on Electrochemical Properties During Cavitation of Carbon Steel in 3.5% NaCl Solution, Corrosion Science and Technology, 19, 163 (2020). Doi: https://doi.org/10.14773/cst.2020.19.4.163
  21. H. K. Hwang, and S. J. Kim, Effect of Temperature on Electrochemical Characteristics of Stainless Steel in Green Death Solution Using Cyclic Potentiodynamic Polarization Test, Corrosion Science and Technology, 20, 266 (2021). Doi: https://doi.org/10.14773/cst.2021.20.5.266
  22. H. S. Kwon, H. S. Kim, C. J. Park, and H. J. Jang, Comprehension of stainless steels, p.180, 191, 198, 212 Steel & Metal News (2007).
  23. R. N. Parkins, Localized corrosion and crack initiation, Materials Science Engineering : A, 103, 143 (1988). Doi: https://doi.org/10.1016/0025-5416(88)90562-9
  24. P. Deng, Q. Peng, E. H. Han, W. Ke, and C. Sun, Proton irradiation assisted localized corrosion and stress corrosion cracking in 304 nuclear grade stainless steel in simulated primary PWR water, Journal of Materials Science & Technology, 65, 61 (2021). Doi: https://doi.org/10.1016/j.jmst.2020.04.068
  25. H. Ogawa, H. Omata, I. Itoh, and H. Okada, Auger Electron Spectroscopic and Electrochemical Analysis of the Effect of Alloying Elements on the Passivation Behavior of Stainless Steels, Journal of The Electrochemical Society, 34, 52 (1978). Doi: https://doi.org/10.5006/0010-9312-34.2.52