DOI QR코드

DOI QR Code

Electrochemical Characteristics and Damage Behavior in Cathode Operating Conditions of 316L Stainless Steel with Test Time and Applied Potential in Metallic Bipolar Plates for PEMFC

고분자 전해질 연료전지 양극 작동 환경에서 실험 시간 및 작동 전압 변수에 따른 316L 스테인리스강의 전기화학적 특성과 손상 거동

  • Shin, Dong-Ho (Graduate School, Mokpo National Maritime University) ;
  • Kim, Seong-Jong (Division of Marine Engineering, Mokpo National Maritime University)
  • 신동호 (목포해양대학교 대학원) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2021.12.09
  • Accepted : 2021.12.13
  • Published : 2021.12.31

Abstract

In this investigation, electrochemical characteristics and damage behavior of 316L stainless steel polymer electrolyte membrane fuel cell(PEMFC) were analyzed by potentiodynamic and potentiostatic tests in cathode operating condition of PEMFC. As the result of potentiodynamic polarization test, range of passive region was larger than range of active region. In the result of potentiostatic test, damage depth and width, pit volume, and surface roughness were increased 1.57, 1.27, 2.48, and 1.34 times, respectively, at 1.2 V compared to 0.6 V at 24 hours. Also, as a result of linear regression analysis of damage depth and width graph, trend lines of damage depth and width according to applied potentials were 16.6 and 14.3 times larger, respectively. This demonstrated that applied potential had a greater effect on pitting damage depth of 316L stainless steel. The damage tendency values were 0.329 at 6 hours and 0.633 at 24 hours with applied potentials, representing rapid growth in depth direction according to the test times and applied potentials. Scanning electron microscopy images revealed that surface of specimen exhibited clear pitting damage with test times and applied potentials, which was thought to be because a stable oxide film was formed by Cr and Mo.

Keywords

References

  1. J. B. Lee and I. H. Oh, Corrosion characteristics and interfacial contact resistances of TiN and CrN coatings deposited by PVD on 316L stainless steel for polymer electrolyte membrane fuel cell bipolar plates, Corrosion Science and Technology, 12, 171 (2013). Doi: https://doi.org/10.14773/cst.2013.12.4.171
  2. B. C. H. Steele and A. Heinzel, Materials for fuel-cell technologies, Nature, 414, 345 (2001). Doi: https://doi.org/10.1142/9789814317665_0031
  3. J. Ihonen, F. Jaouen, G. Lindbergh, and G. Sundholm, A novel polymer electrolyte fuel cell for laboratory investigations and in-situ contact resistance measurements, Electrochemica Acta, 46, 2899 (2001). Doi: https://doi.org/10.1016/S0013-4686(01)00510-2
  4. J. M. Moton, B. D. James, and W. G. Colella, Advances in electrochemical compression of hydrogen, Proc. of the ASME 2014 12th Int. Conference on Fuel Cell Science, Engineering and Technology, p. 1, ASME (2014). Doi: https://doi.org/10.1115/FuelCell2014-6641
  5. H. Tawfik, Y. Hung and D. Mahagan, Bipolar plate durability and challenges. polymer electrolyte fuel cell degradation, pp. 249 - 291, Academic Press (2012),
  6. H. Tsuchiya and O. Kobayashi, Mass production cost of PEM fuel cell by learning curve, International Journal of Hydrogen Energy, 29, 985 (2004). Doi: https://doi.org/10.1016/j.ijhydene.2003.10.011
  7. A. Hermann, T. Chaudhuri and P. Spagnol, Bipolar plates for PEM fuel cells: A review, International Journal of Hydrogen Energy, 30, 1297 (2005). Doi: https://doi.org/10.1016/j.ijhydene.2005.04.016
  8. S. Jannat, H. Rashtchi, M. Atapour, M. A. Golozar, H. Elmkhah and M. Zhiani, Preparation and performance of nanometric Ti/TiN multi-layer physical vapor deposited coating on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells, Journal of Power Sources, 435, 226818 (2019). Doi: https://doi.org/10.1016/j.jpowsour.2019.226818
  9. N. Aukland, A. Boudina, D. S. eddy, J. V. Mantese, M. P. Thompson, and S. S. Wang, Alloys that form conductive and passivating oxides for proton exchange membrane fuel cell bipolar plates, Journal of Materials Research, 19, 1723 (2004). Doi: https://doi.org/10.1557/JMR.2004.0216
  10. R. C. Newman, W. P. Wong, H. Ezuber and A. Garner, Pitting of Stainless Steels by Thiosulfate Ions, Corrosion, 45, 282 (1989). Doi: https://doi.org/10.5006/1.3577855
  11. A. Garner, Thiosulfate Corrosion in Paper-Machine White Water, Corrosion, 41, 587 (1985). Doi: https://doi.org/10.5006/1.3582988
  12. P. A. Lozada, O. O. Xometl, D. G. Lucero, N. V. Likhanova, M. A. D. Aguilar, I. V. Lijanova, and E. A. Estrada, The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate), Materials, 7, 5711 (2014). Doi: https://doi.org/10.3390/ma7085711
  13. Y. Yang, L. J. Guo, and H. Liu, Corrosion characteristics of SS316L as bipolar plate material in PEMFC cathode environments with different acidities, International Journal of Hydrogen Energy, 36, 1654 (2011). Doi: https://doi.org/10.1016/j.ijhydene.2010.10.067
  14. Y. Yang, L. J. Guo, and H. Liu, Factors affecting corrosion behavior of SS316L as bipolar plate material in PEMFC cathode environments, International Journal of Hydrogen Energy, 37, 13822 (2012). Doi: https://doi.org/10.1016/j.ijhydene.2012.04.026
  15. J. T. Kim, J. H. Lee, and Y. S. Tak, Relationship between carbon corrosion and positive electrode potential in a proton-exchange membrane fuel cell during start/stop operation, Journal of Power Sources, 192, 674 (2009). Doi: https://doi.org/10.1016/j.jpowsour.2009.03.039
  16. Y. Wang, and D. O. Northwood, Effects of O2 and H2 on the corrosion of SS316L metallic bipolar plate materials in simulated anode and cathode environments of PEM fuel cells, Electrochemica Acta, 52, 6793 (2007). Doi: https://doi.org/10.1016/j.electacta.2007.05.001
  17. B. S. Covino, Jr. M. Rosen, T. J. Driscoll, T. C. Murphy, and C. R. Molock, The effect of oxygen on the open-circuit passivity of Fe-18Cr, Corrosion Science, 26, 95 (1986). Doi: https://doi.org/10.1016/0010-938X(86)90039-9
  18. H. Tsuchiya, S. Fujimoto, O. Chihara, and T. Shibata, Semiconductive behavior of passive films formed on pure Cr and Fe-Cr alloys in sulfuric acid solution, Electrochimica Acta, 47, 4357 (2002). Doi: https://doi.org/10.1016/S0013-4686(02)00508-X
  19. W. Y. Lai, W. Z. Zhao, Z. F. Yin, and J. Zhang, EIS and XPS studies on passive film of AISI 304 stainless steel in dilute sulfuric acid solution, Surface and Interface Analysis, 44, 418 (2012). Doi: https://doi.org/10.1002/sia.3819
  20. Z. Ai, J. Jiang, W. Sun, D. Song, H. Ma, J. Zhang, D. Wang, Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH, Applied Surface Science, 389, 1126 (2016). Doi: https://doi.org/10.1016/j.apsusc.2016.07.142
  21. H. Luo, C. Dong, K. Xiao, X. Li, The passive behaviour of ferritic stainless steel containing alloyed tin in acidic media, Royal Society of Chemistry, 6, 9940 (2016). Doi: https://doi.org/10.1039/C5RA23698C
  22. Z. Wang, L. Zhang, Z. Zhang, and M. Lu, Combined effect of pH and H2S on the structure of passive film formed on type 316L stainless steel, Applied Surface Science, 458, 686 (2018). Doi: https://doi.org/10.1016/j.apsusc.2018.07.122
  23. X. Y. Wang, Y. S. Wu, L. Zhang, and Z. Y. Yu, Atomic Force Microscopy and X-Ray Photoelectron Spectroscopy Study on the Passive Film for Type 316L Stainless Steel, Corrosion, 57, 54, (2001). Doi: https://doi.org/10.5006/1.3290380
  24. G. H. Smudde Jr, W. I. Bailey, B. S. Felker, M. A. George, and J. G. Langan, Materials selection for HBr service, Corrosion Science, 37, 1931 (1995). Doi: https://doi.org/10.1016/0010-938X(95)00075-U
  25. H. S. Kwon, H. S. Kim, C. J. Park, and H. J. Jang, Comprehension of stainless steels, p. 165, 191 Steel & Metal News (2007).
  26. A. L. Paulina, O. X. Octavio, G. L. Diego, V. L. Natalya, A. D. A. Marco, V. L. Irina, and A. E. Elsa, The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1- vinyl-3-alkyl-imidazolium Hexafluorophosphate, Materials, 7, 5711 (2014). Doi: https://doi.org/10.3390/ma7085711
  27. L. F. Lin, C. Y. Chao, and D. D. Macdonald, A Point Defect Model for Anodic Passive Films: II . Chemical Breakdown and Pit Initiation, Journal of The Electrochemical Society, 128, 1194 (1981). Doi: https://doi.org/10.1149/1.2127592
  28. D. A. Jones, Principles and prevention of corrosion, pp. 267 - 281, Pearson (1992).
  29. D. D. Macdonald and M. U. Macdonald, Theory of Steady-State Passive Films, Journal of The Electrochemical Society, 137, 2395 (1990). Doi: https://doi.org/10.1149/1.2086949
  30. Z. Wang, F. D. Franco, A. Seyeux, S. Zanna, V. Maurice, and P. Marcus, Passivation-Induced Physicochemical Alterations of the Native Surface Oxide Film on 316L Austenitic Stainless Steel, Journal of The Electrochemical Society, 166, 3376 (2019). Doi: https://doi.org/10.1149/2.0321911jes
  31. R. C. Newman, 2001 W.R. Whitney Award Lecture: Understanding the Corrosion of Stainless Steel, Corrosion, 57, 1030 (2001). Doi: https://doi.org/10.5006/1.3281676
  32. I. Olefjord, B. Brox, and U. Jelestam, Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA, Journal of The Electrochemical Society, 132, 2854 (1985). Doi: https://doi.org/10.1149/1.2113683