DOI QR코드

DOI QR Code

Cr 첨가가 고망간강의 중성 수용액 환경 내 유동가속부식 거동에 미치는 영향

Effect of Cr Addition to High Mn Steel on Flow-Accelerated Corrosion Behaviors in Neutral Aqueous Environments

  • 정영재 (순천대학교 신소재공학과) ;
  • 박진성 (순천대학교 신소재공학과) ;
  • 방혜린 (순천대학교 신소재공학과) ;
  • 이순기 (포스코 기술연구원) ;
  • 최종교 (포스코 기술연구원) ;
  • 김성진 (순천대학교 신소재공학과)
  • Jeong, Yeong Jae (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Park, Jin Sung (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Bang, Hye Rin (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Lee, Soon Gi (POSCO Technical Research Laboratories) ;
  • Choi, Jong Kyo (POSCO Technical Research Laboratories) ;
  • Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
  • 투고 : 2021.11.16
  • 심사 : 2021.11.24
  • 발행 : 2021.12.31

초록

The effect of Cr addition to high Mn steel on flow-accelerated corrosion (FAC) behavior in a neutral aqueous environment was evaluated. For comparison, two types of conventional ferritic steels (API X70 steel and 9% Ni steel) were used. A range of experiments (electrochemical polarization and impedance tests, weight loss measurement, and metallographic observation of corrosion scale) were conducted. This study showed that high Mn steel with 3% Cr exhibited the highest resistance to FAC presumably due to the formation of a bi-layer scale structure composed of an inner Cr enriched Fe oxide and an outer Mn substituted partially with Fe oxide on the surface. Although the high Mn steels had the lowest corrosion resistance at the initial corrosion stage due to rapid dissolution kinetics of Mn elements on their surface, the kinetics of inner scale (i.e. Cr enriched Fe oxide) formation on Cr-bearing high Mn steel was faster in dynamic flowing condition compared to stagnant condition. On the other hand, the corrosion scales formed on API X70 and 9% Ni steels did not provide sufficient anti-corrosion function during the prolonged exposure to dynamic flowing conditions.

키워드

참고문헌

  1. Y. H. Lee, H. M. Lee, Y. I. Kim, and S. H. Nahm, Mechanical degradation of API X65 pipeline steel by exposure of hydrogen gas, Metals and Materials International, 17, 389 (2011). Doi: https://doi.org/10.1007/s12540-011-0614-1
  2. S. U. Koh, H. G. Jung, and K. B. Kang, Effect of nonmetallic inclusion and hot rolling process parameters on hydrogen induced cracking of linepipe steels, Journal of Korea Institute of Metals and Materials, 46, 257 (2008). https://www.koreascience.or.kr/article/JAKO200836439080970.page
  3. X. Li, J. Liu, J. Sun, X. Lin, C. Li, and N. Cao, Effect of microstructural aspects in the heat-affected zone of high strength pipeline steels on the stress corrosion cracking mechanism: Part I. In acidic soil environment, Corrosion Science, 160, 1081671 (2019). Doi: https://doi.org/10.1016/J.CORSCI.2019.108167
  4. L. A. D. Oliveira, O. V. Correa, D.J. D. Santos, A. A. Z. Paez, M. C. L. D. Oliveira, and R. A. Antunes, Effect of silicate-based films on the corrosion behavior of the API 5L X80 pipeline steel, Corrosion Science, 139, 21 (2018). Doi: https://doi.org/10.1016/j.corsci.2018.04.035
  5. Y. J. Jeong, M.S. Thesis, pp. 13-17, Sunchon National University, Suncheon (s).
  6. L. Zeng, G. A. Zhang, and X. P. Guo, Erosion-corrosion at different locations of X65 carbon steel elbow, Corrosion Science, 85, 318 (2014). Doi: https://doi.org/10.1016/j.corsci.2014.04.045
  7. M. M. Stack and G. H. Abdulrahman, Mapping erosion-corrosion of carbon steel in oil-water solution: Effect of velocity and applied potential, Wear, 274-275, 401 (2012). Doi: https://doi.org/10.1016/j.wear.2011.10.008
  8. R. C. Barik, J. A. Wharton, R. J. K. Wood, and K. R. Stokes, Electro-mechanical interactions during erosion-corrosion, Wear, 267, 1900 (2009). Doi: https://doi.org/10.1016/j.wear. 2009.03.011
  9. G. W. Park, H. Jo, M. Park, B. J. Kim, W. Lee, S. Shin, S. S. Park, Y. S. Ahn, and J. B. Jeon, Effect of heat treatment and drawing on high-manganese steel pipe welded by gas tungsten arc, Metals, 10, 1366 (2020). Doi: https://doi.org/10.3390/met10101366
  10. G. Park, S. Jeong, H. Kang, and C. Lee, Improvement of circumferential ductility by reducing discontinuities in a high-Mn TWIP steel weldment, Materials Characterization, 139, 293 (2018). Doi: https://doi.org/10.1016/j.matchar.2018.03.009
  11. S. G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K, Journal of Physical and Chemical Reference Data, 18, 1 (1989). Doi: https://doi.org/10.1063/1.555839
  12. S. Fajardo, I. Llorente, J. A. Jimenez, J. M. Bastidas, and D. M. Bastidas, Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution, Corrosion Science, 154, 246 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.04.026
  13. S. O. Kim, J. K. Hwang, and S. J. Kim, Effect of alloying elements (Cu, Al, Si) on the electrochemical corrosion behaviors of TWIP steel in a 3.5% NaCl solution, Corrosion Science and Technology, 18, 300 (2019). Doi: https://doi.org/10.14773/cst.2019.18.6.300
  14. P. H. Refait, M. Abdelmoula, and J. M. R. Genin, Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions, Corrosion Science, 40, 1547 (1998). Doi: https://doi.org/10.1016/S0010-938X(98)00066-3
  15. X. M. Zhu and Y. S. Zhang, Investigation of the electrochemical corrosion behavior and passive film for Fe-Mn, Fe-Mn-Al, and Fe-Mn-Al-Cr Alloys in aqueous solutions corrosion, Corrosion, 54, 3 (1998). Doi: https://doi.org/10.5006/1.3284826
  16. Y. Hyun and H. Kim, Effects of alloying elements on the corrosion properties of high strength steel in a sour environment, Journal of the Korean Institute of Metals and Material, 54, 885 (2016). Doi: https://doi.org/10.3365/KJMM.2016.54.12.885
  17. K. Asami and M. Kikuchi, Characterization of rust layers on weathering steels air-exposed for a long period, Materials Transactions, 43, 2818 (2002). Doi: https://doi.org/10.2320 /matertrans.43.2818 https://doi.org/10.2320/matertrans.43.2818
  18. C. Wagner and W. Traud, Uber die Deutung von Korrosionsvorgangen durch Uberlagerung von elektrochemischen Teilvorgangen und uber die Potentialbildung an Mischelektroden, Zeitschrift fur Elektrochemie und angewandte physikalische Chemie, 44, 391 (1938). Doi: https://doi.org/10.1002/bbpc.19380440702
  19. M. Stern and A. L. Geary, Electrochemical polarization: I. A theoretical analysis of the Shape of polarization curves, Journal of the electrochemical society, 104, 56 (1957). Doi: https://doi.org/10.1149/1.2428496
  20. Y. Mehta, S. Trivedi, K. Chandra, and P. S. Mishra, Effect of silicon on the corrosion behavior of powder-processed phosphoric irons, Journal of Minerals and Materials Characterization and Engineering, 9, 855 (2010). Doi: https://doi.org/10.4236/jmmce.2010.910062
  21. Y. J. Jeong, S. O. Kim, J. S. Park, J. W. Lee, J. K. Hwang, S. G. Lee, J. K. Choi, and S. J. Kim, Strong and ductile Fe-24Mn-3Cr alloy resistant against erosion-corrosion, Materials Degradation, 5, 47 (2021). Doi: https://doi.org/10.1038/s41529-021-00195-0
  22. M. B. Kannan, R. K. S. Raman, and S. Khoddam, Comparative studies on the corrosion properties of a Fe-MnAl-Si steel and an interstitial-free steel, Corrosion Science, 50, 2879 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.07.024
  23. D. A. Lopez, S. N. Simison, and S. R. de Sanchez, Inhibitors performance in CO2 corrosion: EIS studies on the interaction between their molecular structure and steel microstructure, Corrosion Science, 47, 735 (2005). Doi: https://doi.org/10.1016/j.corsci.2004.07.010
  24. S. Nesic, M. Nordsveen, R. Nyborg, and A. Stangeland, A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 2: a numerical experiment, Corrosion, 59, 489 (2003). Doi: https://doi.org/10.5006/1.3277579
  25. J. Flis, H. W. Pickering, and K. Osseo-Asare, Interpretation of impedance data for reinforcing steel in alkaline solution containing chlorides and acetates, Electrochemical Acta, 43, 1921 (1998). Doi: https://doi.org/10.1016/S0013-4686(97)10004-4
  26. S. B. Shin, S. J. Song, Y. W. Shin, J. G. Kim, B. J. Park, and Y. C. Suh, Effect of molybdenum on the corrosion of low alloy steels in synthetic seawater, Materials Transactions, 57, 2116 (2016). Doi: https://doi.org/10.1016/j.corsci.2008.07.024
  27. A. L. Morales, C. A. B. Meneses, F. Jaramillo, C. Arroyave, and J. M. Greneche, Properties of goethite grown under the presence of Cr3+, Cu2+ and Mn2+ ions, Hyperfine Interactions, 148-149, 135 (2003). Doi: https://doi.org/10.1023/B:HYPE.0000003774.23704.52
  28. J. A. V. Orman and K. L. Crispin, Diffusion in Oxides, Reviews in Mineralogy and Geochemistry, 72, 757 (2010). Doi: https://doi.org/10.2138/rmg.2010.72.17
  29. F. Lantelme, A. Derja, and N. Kumagai, Electroreduction of Ni2+ and Fe2+ in a fused electrolyte formation of a two-component alloy and the role of the underpotential deposition, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 248, 369 (1988). Doi: https://doi.org/10.1016/0022-0728(88)85097-6