DOI QR코드

DOI QR Code

Effect of Ni Additions on the Microstructure, Mechanical Properties, and Electrical Conductivity of Al Alloy

  • Received : 2021.09.17
  • Accepted : 2021.12.06
  • Published : 2021.12.27

Abstract

In this paper, the effect of Ni (0, 0.5 and 1.0 wt%) additions on the microstructure, mechanical properties and electrical conductivity of cast and extruded Al-MM-Sb alloy is studied using field emission scanning electron microscopy, and a universal tensile testing machine. Molten aluminum alloy is maintained at 750 ℃ and then poured into a mold at 200 ℃. Aluminum alloys are hot-extruded into a rod that is 12 mm in diameter with a reduction ratio of 39:1 at 550 ℃. The addition of Ni results in the formation of Al11RE3, AlSb and Al3Ni intermetallic compounds; the area fraction of these intermetallic compounds increases with increasing Ni contents. As the amount of Ni increases, the average grain sizes of the extruded Al alloy decrease to 1359, 536, and 153 ㎛, and the high-angle grain boundary fractions increase to 8, 20, and 34 %. As the Ni content increases from 0 to 1.0 wt%, the electrical conductivity is not significantly different, with values from 57.4 to 57.1 % IACS.

Keywords

Acknowledgement

This study has been conducted with the support of the Korea Institute of Industrial Technology as "Development of Core Technologies for a Smart Mobility (kitech JA-21-0005)".

References

  1. H. Jiang, S. Li, Q. Zheng, L. Zhang, J. He, Y. Song, C. Deng and J. Zhao, Mater. Des., 195, 108991 (2020). https://doi.org/10.1016/j.matdes.2020.108991
  2. S.-S. Na, Y.-H. Kim, H.-T. Son and S.-H. Lee, Korean J. Mater. Res., 30, 542 (2020). https://doi.org/10.3740/MRSK.2020.30.10.542
  3. D. Li, C. Cui, X. Wang, Q. Wang, C. Chen and S. Liu, Mater. Des., 90, 820 (2016). https://doi.org/10.1016/j.matdes.2015.10.078
  4. A. E.Medvedev, M. Y. Murashkin, N. A. Enikeev, R. Z. Valiev, P. D.Hodgson and R. Lapovok, J. Alloys Compd., 745, 696 (2018). https://doi.org/10.1016/j.jallcom.2018.02.247
  5. C.-G. Jung, U. Hiroshi, H.-T. Son and S.-H. Lee, Korean J. Mater. Res., 27, 597 (2017). https://doi.org/10.3740/MRSK.2017.27.11.597
  6. M. Y. Murashkin, I. Sabirov, A. E. Medvedev, N. A. Enikeev, W. Lefebvre, R. Z. Valiev and X. Sauvage, Mater. Des., 90, 433 (2016). https://doi.org/10.1016/j.matdes.2015.10.163
  7. Q. Zheng, L. Zhang, H. Jiang, J. Zhao and J. He, J. Mater. Sci. Tech., 47, 142 (2020). https://doi.org/10.1016/j.jmst.2019.12.021
  8. A. A. Mogucheva, D. V. Zyabkin and R. O. Kaibyshev, Met. Sci. Heat Treat., 53, 450 (2012). https://doi.org/10.1007/s11041-012-9414-6
  9. S. S. Nayak, M. Wollgarten, J. Banhart, S. K. Pabi and B. S. Murty, Mater. Sci. Eng., A, 527, 2370 (2010). https://doi.org/10.1016/j.msea.2009.12.044
  10. W. Ding, X. Zhao, T. Chen, H. Zhang, X. Liu, Y. Cheng and D. Lei, J. Alloys Compd., 830, 154685 (2020). https://doi.org/10.1016/j.jallcom.2020.154685
  11. Z. Mao, D. N. Seidman and C. Wolverton, Acta Mater., 59, 3659 (2011). https://doi.org/10.1016/j.actamat.2011.02.040
  12. C. Li, C. Wang, Z.-Z. Yang, P.-K. Ma, M.-W. Ren and H.-Y. Wang, J. Alloys Compd., 869, 159304 (2021). https://doi.org/10.1016/j.jallcom.2021.159304
  13. R. Akhil, O. P. Nath and S. Arul, Mater. Today: Proc., 24, 1042 (2020). https://doi.org/10.1016/j.matpr.2020.04.418
  14. L. Pan, S. Zhang, Y. Yang, N. Gupta, C. Yang, Y. Zhao and Z. Hu, Metall. Mater. Trans. A, 51, 214 (2020). https://doi.org/10.1007/s11661-019-05511-7
  15. B. Jiang, H. Wang, D. Yi, Y. Tian, F. Shen, B. Wang, H. Liu and Z. Hu, Mater. Charact., 162, 110184 (2020). https://doi.org/10.1016/j.matchar.2020.110184
  16. Z. Cao, G. Kong, C. Che, Y. Wang and H. Peng, J. Rare Earths, 35, 1022 (2017). https://doi.org/10.1016/s1002-0721(17)61008-1
  17. J. D. Robson, D. T. Henry and B. Davis, Acta Mater., 57, 2739 (2009). https://doi.org/10.1016/j.actamat.2009.02.032
  18. M. Balakrishnan, I. Dinaharan, K. Kalaiselvan and R. Palanivel, J. Mater. Res. Technol., 9, 4356 (2020). https://doi.org/10.1016/j.jmrt.2020.02.060