DOI QR코드

DOI QR Code

Structural Stability Analysis of Medical Waste Sterilization Shredder

의료폐기물 멸균분쇄용 파쇄기의 구조적 안정성 분석

  • Azad, Muhammad Muzammil (Department of Mechanical Engineering, Dongguk University) ;
  • Kim, Dohoon (Department of Mechanical, Robotics and Energy Engineering, Dongguk University) ;
  • Khalid, Salman (Department of Mechanical, Robotics and Energy Engineering, Dongguk University) ;
  • Kim, Heung Soo (Department of Mechanical, Robotics and Energy Engineering, Dongguk University)
  • Received : 2021.10.29
  • Accepted : 2021.11.05
  • Published : 2021.12.31

Abstract

Medical waste management is becoming increasingly important, specifically in light of the current COVID-19 pandemic, as hospitals, clinics, quarantine centers, and medical research institutes are generating tons of medical waste every day. Previously, a traditional incineration process was utilized for managing medical waste, but the lack of landfill sites, and accompanying environmental concerns endanger public health. Consequently, an innovative sterilization shredding system was developed to resolve this problem. In this research, we focused on the design and numerical analysis of a shredding system for hazardous and infectious medical waste, to establish its operational performance. The shredding machine's components were modeled in a CAD application, and finite element analysis (FEA) was conducted using ABAQUS software. Static, fatigue, and dynamic loading conditions were used to analyze the structural stability of the cutting blade. The blade geometry proved to be effective based on the cutting force applied to shred medical waste. The dynamic stability of the structure was verified using modal analysis. Furthermore, an S-N curve was generated using a high cycle fatigue study, to predict the expected life of the cutting blade. Resultantly, an appropriate shredder system was devised to link with a sterilization unit, which could be beneficial in reducing the volume of medical waste and disposal time, thereof, thus eliminating environmental issues, and potential health hazards.

COVID-19 대유행으로 인해 병원, 진료소, 검역소 및 의료 연구 기관을 포함한 의료 시설에서 매일 수많은 의료 폐기물이 발생함에 따라 의료폐기물 처리가 심각한 문제가 되고 있다. 이전에는 전통적인 소각방법이 사용되었지만 매립지 부족 및 관련 환경 문제로 인해 공중 보건이 위험에 처해 있다. 이런 문제를 극복하기 위해 멸균분쇄용 파쇄기를 개발하였다. 본 연구에서는 유해 및 감염성 의료폐기물에 대한 작동 성능을 결정하기 위해 분쇄용 파쇄 시스템의 설계 및 수치해석을 수행하였다. 파쇄기의 부품은 CAD 소프트웨어를 이용하여 모델링하였으며, ABAQUS를 사용하여 유한요소해석을 수행하였다. 정적, 동적 및 피로하중 조건 하에서 파쇄기 절단 날의 해석을 수행하였으며, 의료 폐기물을 분쇄하는데 필요한 절단력을 기반으로 절단 날의 형상이 효과적임을 입증하였다. 모달 해석을 통해 구조물의 동적 안정성을 검증하였다. 또한, 절단 날의 수명을 예측하기 위해 고주기 피로해석을 통해 S-N 선도를 생성하였다. 이를 통해 적절한 분쇄용 파쇄 시스템이 멸균 장치와 통합되도록 설계하여 의료 폐기물의 양과 처리 시간을 줄임으로써 환경 문제와 잠재적인 건강 위험을 극복하는 방안을 제시하였다.

Keywords

Acknowledgement

본 연구는 2021년도 환경부의 재원으로 한국환경산업기술원(KEITI)의 지원을 받아 "병원 규모에 최적화된 감염우려 의료폐기물 멸균분쇄 시스템 개발"을 수행한 연구결과입니다(No.RE202101609).

References

  1. Bae, H.J., Kang, J.E., Lim, Y.R. (2020) Assessment of Relative Asthma Risk in Populations Living Near Incineration Facilities in Seoul, Korea, Int. J. Environ. Res. & Public Health, 17(20), pp.1~12.
  2. Chaiyat, N. (2021) Energy, Exergy, Economic, and Environmental Analysis of an Organic Rankine Cycle Integrating with Infectious Medical Waste Incinerator, Therm. Sci. & Eng. Prog., 22, p.100810. https://doi.org/10.1016/j.tsep.2020.100810
  3. Chartier, Y. et al. (2014) Safe Management of Wastes from Health Care Activities, Bulletin of the World Health Organization, 79(2), pp.171~171.
  4. Corum, A., Demir, H.H., Okten, H.E. (2015) A Comparative Economic Analysis for Medical, Environ. Prot. Eng., 41(3), pp.137~145.
  5. Datta, P., Mohi, G., Chander, J. (2018) Biomedical Waste Management in India: Critical Appraisal, J. Lab. Physicians, 10(01), pp.006~014.
  6. Gautam, V., Thapar, R., Sharma, M. (2010) Biomedical Waste Management: Incineration vs. Environmental Safety, Indian J. Med. Microbiol., 28(3), pp.191~192. https://doi.org/10.4103/0255-0857.66465
  7. Hong, J., Zhan, S., Yu, Z., Hong, J., Qi, C. (2018) Life-Cycle Environmental and Economic Assessment of Medical Waste Treatment, J. Clean. Prod., 174, pp.65~73. https://doi.org/10.1016/j.jclepro.2017.10.206
  8. Ilyas, S., Srivastava, R.R., Kim, H. (2020) Disinfection Technology and Strategies for COVID-19 Hospital and Bio-Medical Waste Management, Sci. Total Environ., 749, 141652. https://doi.org/10.1016/j.scitotenv.2020.141652
  9. Kim, J., Jeong, S. (2017) Economic and Environmental Cost Analysis of Incineration and Recovery Alternatives for Flammable Industrial Waste: The case of South Korea, Sustainability, 9(9), 1638. https://doi.org/10.3390/su9091638
  10. Kim, S., Eom, Y., Lee, T.G. (2018) Survey of the Mercury-Containing Wastes Released from Various Sources in Korea, J. Ind. & Eng. Chem., 61, pp.288~294. https://doi.org/10.1016/j.jiec.2017.12.026
  11. Kythavone, L., Chaiyat, N. (2020) Life Cycle Assessment of a Very Small Organic Rankine Cycle and Municipal Solid Waste Incinerator for Infectious Medical Waste, Therm. Sci. & Eng. Prog., 18, p. 100526. https://doi.org/10.1016/j.tsep.2020.100526
  12. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Feng, Z. (2020) Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia, New England J. Med., 382(13), pp.1199~1207. https://doi.org/10.1056/nejmoa2001316
  13. Liu, F., Liu, H.Q., Wei, G.X., Zhang, R., Zeng, T.T., Liu, G.S., Zhou, J.H. (2018) Characteristics and Treatment Methods of Medical Waste Incinerator Fly Ash: A Review, Process., 6(10), pp.1~25. https://doi.org/10.3390/pr6010001
  14. Minister of Environment (2020) COVID-19 Waste Safety Management Status Inspection, GoKorea.
  15. Oxelosund, S. (2002) Hardox TechSupport, Instant & Small Commer. Print., 21(7), p. 12.
  16. Rhee, S.W. (2020) Management of Used Personal Protective Equipment and Wastes Related to COVID-19 in South Korea, Waste Manag. & Res., 38(8), pp.820~824. https://doi.org/10.1177/0734242X20933343
  17. Singh, N., Tang, Y., Ogunseitan, O.A. (2020) Environmentally Sustainable Management of Used Personal Protective Equipment, Environ. Sci. & Technol., 54(14), pp.8500~8502. https://doi.org/10.1021/acs.est.0c03022
  18. Sohn, J.W., Kim, H.S. (2015) Dynamic Characteristics Recovery of Delaminated Composite Structure, J.Comput. Struct. Eng. Inst. Korea, 28(1), pp.47~52. https://doi.org/10.7734/COSEIK.2015.28.1.47
  19. Thind, P.S., Sareen, A., Singh, D.D., Singh, S., John, S. (2021) Compromising Situation of India's Bio-Medical Waste Incineration Units During Pandemic Outbreak of COVID-19: Associated Environmental-Health Impacts and Mitigation Measures, Environ. Pollut., 276, 116621. https://doi.org/10.1016/j.envpol.2021.116621
  20. Tsakalou, C., P apamarkou, S., Tsakiridis, P .E., Bartzas, G., Tsakalakis, K. (2018) Characterization and Leachability Evaluation of Medical Wastes Incineration Fly and Bottom Ashes and Their Vitrification Outgrowths, J. Environ. Chem. Eng., 6(1), pp.367~376. https://doi.org/10.1016/j.jece.2017.12.012
  21. UNESCAP (2020) The Safe Waste Treatment for COVID-19', United Nations Economic and Social Commission for Asia and the Pacific, pp.1~12.
  22. Voicu, G., Lazea, M., Constantin, G.A., Stefan, E.M., Munteanu, M.G. (2020) Finite Element Analysis of the Compaction Plate from a Garbage Truck, E3S Web of Conferences, EDP Sciences, 180, p.04006.
  23. Wang, J., Shen, J., Ye, D., Yan, X., Zhang, Y., Yang, W., Pan, L. (2020) Disinfection Technology of Hospital Wastes and Wastewater: Suggestions for Disinfection Strategy During Coronavirus Disease 2019 (COVID-19) Pandemic in China, Environ. Pollut., 262, p. 114665. https://doi.org/10.1016/j.envpol.2020.114665
  24. WHO (2002) Treatment and Disposal Technologies for HealthCare Waste, Safe Management of Wastes from Health-Care\ Aactivities, pp.77~112.
  25. WHO (2018) Health-care Waste. Available at: https://www.who.int/news-room/fact-sheets/detail/health-care-waste.
  26. Zhao, S., Lin, Q., Ran, J., Musa, S.S., Yang, G., Wang, W.,Wang, M.H. (2020) Preliminary Estimation of the Basic Reproduction Number of Novel Coronavirus (2019-nCoV) in China, from 2019 to 2020: A Data-Driven Analysis in the Early Phase of the Outbreak, Int. J. Infect. Dis., 92, pp.214~217. https://doi.org/10.1016/j.ijid.2020.01.050