DOI QR코드

DOI QR Code

A Study of CHAMP Satellite Magnetic Anomalies in East Asia

동아시아지역에서의 CHAMP 위성자료에서의 지각 자기이상의 연구

  • Kim, Hyung Rae (Dept. of GeoEnvironmental Sciences, Kongju National University)
  • 김형래 (공주대학교 지질환경과학과)
  • Received : 2021.01.15
  • Accepted : 2021.02.05
  • Published : 2021.02.28

Abstract

Satellite magnetic observations reflect the magnetic properties of deep crust about the depth of Curie isotherm that is a boundary where the magnetic nature of the rocks is disappeared, showing long wavelength anomalies that are not easily detected in near-surface data from airborne and shipborne surveys. For this reason, they are important not only in the analyses on such as plate reconstruction of tectonic boundaries and deep crustal structures, but in the studies of geothermal distribution in Antarctic and Greenland crust, related to global warming issue. It is a conventional method to compute the spherical harmonic coefficients from global coverage of satellite magnetic observations but it should be noted that inclusion of erroneous data from the equator and the poles where magnetic observations are highly disturbed might mislead the global model of the coefficients. Otherwise, the reduced anomaly model can be obtained with less corruption by choosing the area of interest with proper data processing to the area. In this study, I produced a satellite crustal magnetic anomaly map over East Asia (20° ~ 55°N, 108° ~ 150°E) centered on Korean Peninsula, from CHAMP satellite magnetic measurements about mean altitude of 280 km during the last year of the mission, and compared with the one from global crustal magnetic model (MF7). Also, a comparison was made with long wavelength anomalies from EMAG2 model compiled from all near-surface data over the globe.

위성고도에 획득한 지각 자기이상값들은 지상부근(near-surface)의 항공탐사나 해양탐사등에서 얻은 자기이상값들에서 얻기 어려운 장파장의 특징을 보이며 이들은 지각의 자기현상이 소멸되는 큐리 등온 깊이선(Curie isotherm)까지의 심부 지각물질의 자기특징 및 위성고도에서도 나타날 수 있는 강한 자기특징들을 반영한다. 따라서 심부 지하구조나 판구조론을 통한 과거 지구조의 재구성(reconstruction) 및 해석과 최근 지구온난화로 인한 대륙빙하의 해빙과 연관되어 남극 및 그린랜드의 지열분포 연구에 중요한 자료로 이용되고 있다. 이러한 위성 지각 자기이상값은 전지구를 경계조건으로 하는 구면조화함수의 계수모델로 표현되는 것이 일반적이나 많은 계수 계산과 함께 안정적으로 외부자기장을 분리하기 어려운 극지역 및 적도지역의 자료들도 포함되어 이들 자료가 모델 전체에 영향을 줄 수가 있다. 한편, 이와는 달리 관심지역의 자료들만을 가지고 지역에 맞는 몇 단계 자료처리 과정을 거쳐 얻은 지각 자기이상값들은 이러한 영향에서 벗어날 수 있다. 본 연구에서는 한반도를 중심으로 하는 동아시아 지역(20° ~ 55°N, 108° ~ 150°E) 의 CHAMP 위성에서 최저고도였던 시기의 자료를 획득하여 평균 280 km 에서의 지각 자기이상 지도를 제작하고 CHAMP 자료로 만든 전지구 지각 자기이상 모델(MF7)과 비교하여 지각 자기이상 특징들을 파악하고자 한다. 아울러 전세계 지상부근 지각자기이상 자료를 종합하여 제작한 EMAG2에서 장파장 성분을 추출하여 함께 비교하기로 한다.

Keywords

References

  1. Alsdorf, D.E., von Frese, R.R., Arkani-Hamed, J. and Noltimier, H.C. (1994) Separation of lithospheric, external, and core components of the south polar geomagnetic field at satellite altitudes. Journal of Geophysical Research: Solid Earth, v.99, p.4655-4668. https://doi.org/10.1029/93JB02580
  2. Bird, P. (2003) An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, v.4, 1027, https://doi.org/10.1029/2001GC000252
  3. Blakely, R.J., Brocher, T.M. and Wells, R.E. (2005) Subduction-zone magnetic anomalies and implications for hydrated forearc mantle. Geology, v.33, p.445-448. https://doi.org/10.1130/G21447.1
  4. Doo, W.-B., Hsu, S.-K. and Armada, L. (2015) New Magnetic Anomaly Map of the East Asia with Some Preliminary Tectonic Interpretations. Terrestrial, Atmospheric and Oceanic Sciences, v.26, p.73. https://doi.org/10.3319/TAO.2014.08.19.07
  5. Ferre, E.C., Kupenko, I., Martin-Hernandez, F., Ravat, D. and Sanchez-Valle, C. (2020) Magnetic sources in the Earth's mantle. Nature Reviews Earth & Environment, p.1-11. https://doi.org/10.1038/s43017-020-00107-x
  6. Friis-Christensen, E., Luhr, H. and Hulot, G. (2006) Swarm: A constellation to study the Earth's magnetic field. Earth, Planets and Space, v.58, p.351-358. https://doi.org/10.1186/BF03351933
  7. Gao, G., Shi, L., Kang, G., Wu, Y., Bai, C., Wen, L. and Hou, J. (2018) Analysis of the lithospheric magnetic anomalies and tectonics in continental China and the adjacent regions using CHAMP satellite data. Studia Geophysica et Geodaetica, v.62, p.408-426. https://doi.org/10.1007/s11200-016-0102-7
  8. Gilder, S.A., Keller, G.R., Luo, M. and Goodell, P.C. (1991) Eastern Asia and the Western Pacific timing and spatial distribution of rifting in China. Tectonophysics, v.197, p.225-243. https://doi.org/10.1016/0040-1951(91)90043-R
  9. Goodge, J.W. and Finn, C.A. (2010) Glimpses of East Antarctica: Aeromagnetic and satellite magnetic view from the central Transantarctic Mountains of East Antarctica. Journal of Geophysical Research: Solid Earth, v.115. https://doi.org/doi:10.1029/2009JB006890
  10. Guo, Z., Cao, Y., Wang, X., Chen, Y.J., Ning, J., He, W., Tang, Y. and Feng, Y. (2014) Crust and upper mantle structures beneath Northeast China from receiver function studies. Earthquake Science, v.27, p.265-275. https://doi.org/10.1007/s11589-014-0076-x
  11. Hao, T., Liu, Y. and Duan, C. (1998) Characteristics of geophysical field in east China and adjacent regions. Geosciences Journal, v.2, p.108-116. https://doi.org/10.1007/BF02910254
  12. Hinze, W.J., von Frese, R.R.B. and Saad, A.H. (2013) Gravity and Magnetic Exploration: Principles, Practices, and Applications. Cambridge University Press.
  13. Hwang, J.S., Kim, H.R., Suh, M., Taylor, P.T., Kutina, J. and Hu, W.-J. (2010) Long-wavelength geopotential fields study of East Asia from satellite data. Chinese Journal of Geophysics (Chinese), v.53, p.1327-1335. https://doi.org/10.3969/j.issn.0001-5733.2010.06.011
  14. Idoko, C.M., Conder, J.A., Ferre, E.C. and Filiberto, J. (2019) The potential contribution to long wavelength magnetic anomalies from the lithospheric mantle. Physics of the Earth and Planetary Interiors, v.292, p.21-28. https://doi.org/10.1016/j.pepi.2019.05.002
  15. Kim, H.R., Choi, S.-Y., Suh, M., von Frese, R.R.B., Park, K.J. and Yu, H. (2020) Moho modeling of the Yellow Sea (West Sea) from spectrally correlated free-air and terrain gravity data. Geosciences Journal, v.24, p.531-540. https://doi.org/10.1007/s12303-019-0044-5
  16. Kim, H.R., von Frese, R., Hong, J. and Golynsky, A. (2013) A regional lithospheric magnetic modeling over Antarctic region. EGU General Abstract, p.5491.
  17. Kim, H.R., von Frese, R.R., Taylor, P.T., Golynsky, A.V., Gaya-Pique, L.R. and Ferraccioli, F. (2007a) Improved magnetic anomalies of the Antarctic lithosphere from satellite and near-surface data. Geophysical Journal International, v.171, p.119-126. https://doi.org/10.1111/j.1365-246X.2007.03516.x
  18. Kim, H.R. and von Frese, R.R. (2017) Utility of Slepian basis functions for modeling near-surface and satellite magnetic anomalies of the Australian lithosphere. Earth, Planets and Space, v.69, p.53. https://doi.org/10.1186/s40623-017-0636-0
  19. Kim, H.R., von Frese, R.R., Kim, J.W., Taylor, P.T. and Neubert, T. (2002) Orsted verifies regional magnetic anomalies of the Antarctic lithosphere. Geophysical research letters, v.29, p.8002-8005.
  20. Kim, H.R., Gaya-Pique, L.R., von Frese, R.R., Taylor, P.T. and Kim, J.W. (2005a) CHAMP magnetic anomalies of the Antarctic Crust. pp. 261-266, Springer Berlin Heidelberg. Earth Observation with CHAMP.
  21. Kim, J.W., Hwang, J.S., von Frese, R.R., Kim, H.R. and Lee, S.-H. (2007b) Geomagnetic field modeling from satellite attitude control magnetometer measurements. Journal of Geophysical Research: Solid Earth, v.112. https://doi.org/doi:10.1029/2005JB004042
  22. Kim, H.R., von Frese, R.R., Golynsky, A.V., Taylor, P.T. and Kim, J.W. (2005b) Crustal analysis of maud rise from combined satellite and near-surface magnetic survey data. Earth, Planets and Space, v.57, p.717-726. https://doi.org/10.1186/BF03351851
  23. Kutina, J., Cui, S., Pei, R. and Jiang, M. (2007) A deep-seated EW trending structural boundary indicated as extending across the Korean Peninsula at a latitude close to 40°N. Global tectonics and Metallogeny, p.81-102.
  24. Langel, R.A. and Estes, R.H. (1982) A geomagnetic field spectrum. Geophysical Research Letters, v.9, p.250-253. https://doi.org/10.1029/GL009i004p00250
  25. Langel, R.A. and Hinze, W.J. (1998) The Magnetic Field of the Earth's Lithosphere: The Satellite Perspective. Cambridge University Press.
  26. Langel, R.A., Schnetzler, C.C., Phillips, J.D. and Horner, R.J. (1982) Initial vector magnetic anomaly map from MAGSAT. Geophysical Research Letters, v.9, p.273-276. https://doi.org/10.1029/GL009i004p00273
  27. Lee, S.H., Yong, K.L., Choi, H.T., Oh, S.H., Yim, J.R., Kim, Y.B., Seo, H.H. and Lee, H.J. (2008) Analysis of Induced Magnetic Field Bias in LEO Satellites Using Orbital Geometry-based Bias Estimation Algorithm. Journal of the Korean Society for Aeronautical & Space Sciences, v.36, p.1126-1131. https://doi.org/10.5139/JKSAS.2008.36.11.1126
  28. Leftwich, T.E., von Frese, R.R., Potts, L.V., Kim, H.R., Roman, D.R., Taylor, P.T. and Barton, M. (2005) Crustal modeling of the North Atlantic from spectrally correlated free-air and terrain gravity. Journal of Geodynamics, v.40, p.23-50. https://doi.org/10.1016/j.jog.2005.05.001
  29. Martos, Y.M., Catalan, M., Jordan, T.A., Golynsky, A., Golynsky, D., Eagles, G. and Vaughan, D.G. (2017) Heat flux distribution of Antarctica unveiled. Geophysical Research Letters, v.44, p.11,417-11,426. https://doi.org/10.1002/2017GL075609
  30. Maruyama, S., Isozaki, Y., Kimura, G. and Terabayashi, M. (1997) Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island arc, v.6, p.121-142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
  31. Fox-Maule, C., Purucker, M.E., Olsen, N. and Mosegaard, K. (2005) Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science, v.309, p.464-467. https://doi.org/10.1126/science.1106888
  32. Maus, S. (2010) Magnetic Field Model MF7. CIRES, Colorado, USA.[Available at www.geomag.us/models/MF7.html.].
  33. Maus, S., Yin, F., Luhr, H., Manoj, C., Rother, M., Rauberg, J., Michaelis, I., Stolle, C. and Muller, R. (2008) Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements. Geochemistry, Geophysics, Geosystems, v.9.
  34. Meyer, B., Saltus, R. and Chulliat, A. (2017) EMAG2 Version 3-Update of a two arc-minute global magnetic anomaly grid. EGU General Abstract, p.10614.
  35. Olsen, N., Ravat, D., Finlay, C.C. and Kother, L.K. (2017) LCS-1: a high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations. Geophysical Journal International, v.211, p.1461-1477. https://doi.org/10.1093/gji/ggx381
  36. Purucker, M.E., von Frese, R.R. and Taylor, P.T. (1999) Mapping and interpretation of satellite magnetic anomalies from POGO data over the Antarctic region. Annals of Geophysics, v.42.
  37. Ravat, D., Langel, R.A., Purucker, M., Arkani-Hamed, J. and Alsdorf, D.E. (1995) Global vector and scalar Magsat magnetic anomaly maps. Journal of Geophysical Research: Solid Earth, v.100, p.20111-20136. https://doi.org/10.1029/95JB01237
  38. Ravat, D., Whaler, K., Pilkington, M., Sabaka, T. and Purucker, M. (2002) Compatibility of high-altitude aeromagnetic and satellite-altitude magnetic anomalies over Canada. Geophysics, v.67, p.546-554. https://doi.org/10.1190/1.1468615
  39. Regan, R.D., Cain, J.C. and Davis, W.M. (1975) A global magnetic anomaly map. Journal of Geophysical Research, v.80, p.794-802. https://doi.org/10.1029/JB080i005p00794
  40. Sabaka, T.J., Olsen, N., Tyler, R.H. and Kuvshinov, A. (2015) CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Orsted, SAC-C and observatory data. Geophysical Journal International, v.200, p.1596-1626. https://doi.org/10.1093/gji/ggu493
  41. Sibuet, J.-C. and Hsu, S.-K. (1997) Geodynamics of the Taiwan arcarc collision. Tectonophysics, v.274, p.221-251. https://doi.org/10.1016/S0040-1951(96)00305-8
  42. Taylor, P.T., Kim, H.R., Kutina, J. and Johnson, G.L. (2008) Geohazard assessment from satellite magnetic data modeling-With examples from the Arctic Margin along the Canada Basin and the Korean Peninsula along 40 (degree) N (latitude) parallel. Earth, Planets and Space, v.60, p.497. https://doi.org/10.1186/BF03352816
  43. von Frese, R.R., Jones, M.B., Kim, J.W. and Kim, J.-H. (1997) Analysis of anomaly correlations. Geophysics, v.62, p.342-351. https://doi.org/10.1190/1.1444136
  44. Wakita, K. (2018) Geology of the Japanese Islands: An Outline. In Natural Heritage of Japan: Geological, Geomorphological, and Ecological Aspects (eds. A. Chakraborty, K. Mokudai, M. Cooper, M. Watanabe & S. Chakraborty), pp. 9-17, Springer International Publishing, Cham. Geoheritage, Geoparks and Geotourism.
  45. Wang, J. and Li, C.-F. (2018) Curie point depths in Northeast China and their geothermal implications for the Songliao Basin. Journal of Asian Earth Sciences, v.163, p.177-193. https://doi.org/10.1016/j.jseaes.2018.05.026
  46. Zhang, M., Suddaby, P., O'Reilly, S.Y., Norman, M. and Qiu, J. (2000) Nature of the lithospheric mantle beneath the eastern part of the Central Asian fold belt: mantle xenolith evidence. Tectonophysics, v.328, p.131-156. https://doi.org/10.1016/S0040-1951(00)00181-5
  47. Zhang, Z. and Wang, Y. (2007) Crustal structure and contact relationship revealed from deep seismic sounding data in South China. Physics of the Earth and Planetary Interiors, v.165, p.114-126. https://doi.org/10.1016/j.pepi.2007.08.005