Browse > Article
http://dx.doi.org/10.9719/EEG.2021.54.1.117

A Study of CHAMP Satellite Magnetic Anomalies in East Asia  

Kim, Hyung Rae (Dept. of GeoEnvironmental Sciences, Kongju National University)
Publication Information
Economic and Environmental Geology / v.54, no.1, 2021 , pp. 117-126 More about this Journal
Abstract
Satellite magnetic observations reflect the magnetic properties of deep crust about the depth of Curie isotherm that is a boundary where the magnetic nature of the rocks is disappeared, showing long wavelength anomalies that are not easily detected in near-surface data from airborne and shipborne surveys. For this reason, they are important not only in the analyses on such as plate reconstruction of tectonic boundaries and deep crustal structures, but in the studies of geothermal distribution in Antarctic and Greenland crust, related to global warming issue. It is a conventional method to compute the spherical harmonic coefficients from global coverage of satellite magnetic observations but it should be noted that inclusion of erroneous data from the equator and the poles where magnetic observations are highly disturbed might mislead the global model of the coefficients. Otherwise, the reduced anomaly model can be obtained with less corruption by choosing the area of interest with proper data processing to the area. In this study, I produced a satellite crustal magnetic anomaly map over East Asia (20° ~ 55°N, 108° ~ 150°E) centered on Korean Peninsula, from CHAMP satellite magnetic measurements about mean altitude of 280 km during the last year of the mission, and compared with the one from global crustal magnetic model (MF7). Also, a comparison was made with long wavelength anomalies from EMAG2 model compiled from all near-surface data over the globe.
Keywords
CHAMP; satellite data processing; crustal magnetic anomaly; long wavelength; tectonism; East Asia;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wakita, K. (2018) Geology of the Japanese Islands: An Outline. In Natural Heritage of Japan: Geological, Geomorphological, and Ecological Aspects (eds. A. Chakraborty, K. Mokudai, M. Cooper, M. Watanabe & S. Chakraborty), pp. 9-17, Springer International Publishing, Cham. Geoheritage, Geoparks and Geotourism.
2 Wang, J. and Li, C.-F. (2018) Curie point depths in Northeast China and their geothermal implications for the Songliao Basin. Journal of Asian Earth Sciences, v.163, p.177-193. https://doi.org/10.1016/j.jseaes.2018.05.026   DOI
3 Zhang, M., Suddaby, P., O'Reilly, S.Y., Norman, M. and Qiu, J. (2000) Nature of the lithospheric mantle beneath the eastern part of the Central Asian fold belt: mantle xenolith evidence. Tectonophysics, v.328, p.131-156. https://doi.org/10.1016/S0040-1951(00)00181-5   DOI
4 Zhang, Z. and Wang, Y. (2007) Crustal structure and contact relationship revealed from deep seismic sounding data in South China. Physics of the Earth and Planetary Interiors, v.165, p.114-126. https://doi.org/10.1016/j.pepi.2007.08.005   DOI
5 Langel, R.A., Schnetzler, C.C., Phillips, J.D. and Horner, R.J. (1982) Initial vector magnetic anomaly map from MAGSAT. Geophysical Research Letters, v.9, p.273-276.   DOI
6 Lee, S.H., Yong, K.L., Choi, H.T., Oh, S.H., Yim, J.R., Kim, Y.B., Seo, H.H. and Lee, H.J. (2008) Analysis of Induced Magnetic Field Bias in LEO Satellites Using Orbital Geometry-based Bias Estimation Algorithm. Journal of the Korean Society for Aeronautical & Space Sciences, v.36, p.1126-1131.   DOI
7 Leftwich, T.E., von Frese, R.R., Potts, L.V., Kim, H.R., Roman, D.R., Taylor, P.T. and Barton, M. (2005) Crustal modeling of the North Atlantic from spectrally correlated free-air and terrain gravity. Journal of Geodynamics, v.40, p.23-50.   DOI
8 Martos, Y.M., Catalan, M., Jordan, T.A., Golynsky, A., Golynsky, D., Eagles, G. and Vaughan, D.G. (2017) Heat flux distribution of Antarctica unveiled. Geophysical Research Letters, v.44, p.11,417-11,426.   DOI
9 Maruyama, S., Isozaki, Y., Kimura, G. and Terabayashi, M. (1997) Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island arc, v.6, p.121-142.   DOI
10 Fox-Maule, C., Purucker, M.E., Olsen, N. and Mosegaard, K. (2005) Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science, v.309, p.464-467.   DOI
11 Maus, S. (2010) Magnetic Field Model MF7. CIRES, Colorado, USA.[Available at www.geomag.us/models/MF7.html.].
12 Maus, S., Yin, F., Luhr, H., Manoj, C., Rother, M., Rauberg, J., Michaelis, I., Stolle, C. and Muller, R. (2008) Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements. Geochemistry, Geophysics, Geosystems, v.9.
13 Ferre, E.C., Kupenko, I., Martin-Hernandez, F., Ravat, D. and Sanchez-Valle, C. (2020) Magnetic sources in the Earth's mantle. Nature Reviews Earth & Environment, p.1-11. https://doi.org/10.1038/s43017-020-00107-x   DOI
14 Meyer, B., Saltus, R. and Chulliat, A. (2017) EMAG2 Version 3-Update of a two arc-minute global magnetic anomaly grid. EGU General Abstract, p.10614.
15 Alsdorf, D.E., von Frese, R.R., Arkani-Hamed, J. and Noltimier, H.C. (1994) Separation of lithospheric, external, and core components of the south polar geomagnetic field at satellite altitudes. Journal of Geophysical Research: Solid Earth, v.99, p.4655-4668.   DOI
16 Bird, P. (2003) An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, v.4, 1027, https://doi.org/10.1029/2001GC000252   DOI
17 Blakely, R.J., Brocher, T.M. and Wells, R.E. (2005) Subduction-zone magnetic anomalies and implications for hydrated forearc mantle. Geology, v.33, p.445-448. https://doi.org/10.1130/G21447.1   DOI
18 Doo, W.-B., Hsu, S.-K. and Armada, L. (2015) New Magnetic Anomaly Map of the East Asia with Some Preliminary Tectonic Interpretations. Terrestrial, Atmospheric and Oceanic Sciences, v.26, p.73. https://doi.org/10.3319/TAO.2014.08.19.07   DOI
19 Gao, G., Shi, L., Kang, G., Wu, Y., Bai, C., Wen, L. and Hou, J. (2018) Analysis of the lithospheric magnetic anomalies and tectonics in continental China and the adjacent regions using CHAMP satellite data. Studia Geophysica et Geodaetica, v.62, p.408-426. https://doi.org/10.1007/s11200-016-0102-7   DOI
20 Friis-Christensen, E., Luhr, H. and Hulot, G. (2006) Swarm: A constellation to study the Earth's magnetic field. Earth, Planets and Space, v.58, p.351-358.   DOI
21 Gilder, S.A., Keller, G.R., Luo, M. and Goodell, P.C. (1991) Eastern Asia and the Western Pacific timing and spatial distribution of rifting in China. Tectonophysics, v.197, p.225-243. https://doi.org/10.1016/0040-1951(91)90043-R   DOI
22 Hinze, W.J., von Frese, R.R.B. and Saad, A.H. (2013) Gravity and Magnetic Exploration: Principles, Practices, and Applications. Cambridge University Press.
23 Goodge, J.W. and Finn, C.A. (2010) Glimpses of East Antarctica: Aeromagnetic and satellite magnetic view from the central Transantarctic Mountains of East Antarctica. Journal of Geophysical Research: Solid Earth, v.115. https://doi.org/doi:10.1029/2009JB006890   DOI
24 Guo, Z., Cao, Y., Wang, X., Chen, Y.J., Ning, J., He, W., Tang, Y. and Feng, Y. (2014) Crust and upper mantle structures beneath Northeast China from receiver function studies. Earthquake Science, v.27, p.265-275.   DOI
25 Hao, T., Liu, Y. and Duan, C. (1998) Characteristics of geophysical field in east China and adjacent regions. Geosciences Journal, v.2, p.108-116. https://doi.org/10.1007/BF02910254   DOI
26 Kim, H.R., von Frese, R., Hong, J. and Golynsky, A. (2013) A regional lithospheric magnetic modeling over Antarctic region. EGU General Abstract, p.5491.
27 Hwang, J.S., Kim, H.R., Suh, M., Taylor, P.T., Kutina, J. and Hu, W.-J. (2010) Long-wavelength geopotential fields study of East Asia from satellite data. Chinese Journal of Geophysics (Chinese), v.53, p.1327-1335.   DOI
28 Idoko, C.M., Conder, J.A., Ferre, E.C. and Filiberto, J. (2019) The potential contribution to long wavelength magnetic anomalies from the lithospheric mantle. Physics of the Earth and Planetary Interiors, v.292, p.21-28. https://doi.org/10.1016/j.pepi.2019.05.002   DOI
29 Kim, H.R., Choi, S.-Y., Suh, M., von Frese, R.R.B., Park, K.J. and Yu, H. (2020) Moho modeling of the Yellow Sea (West Sea) from spectrally correlated free-air and terrain gravity data. Geosciences Journal, v.24, p.531-540. https://doi.org/10.1007/s12303-019-0044-5   DOI
30 Kim, H.R., von Frese, R.R., Taylor, P.T., Golynsky, A.V., Gaya-Pique, L.R. and Ferraccioli, F. (2007a) Improved magnetic anomalies of the Antarctic lithosphere from satellite and near-surface data. Geophysical Journal International, v.171, p.119-126.   DOI
31 Kim, H.R. and von Frese, R.R. (2017) Utility of Slepian basis functions for modeling near-surface and satellite magnetic anomalies of the Australian lithosphere. Earth, Planets and Space, v.69, p.53.   DOI
32 Kim, H.R., von Frese, R.R., Kim, J.W., Taylor, P.T. and Neubert, T. (2002) Orsted verifies regional magnetic anomalies of the Antarctic lithosphere. Geophysical research letters, v.29, p.8002-8005.
33 Kutina, J., Cui, S., Pei, R. and Jiang, M. (2007) A deep-seated EW trending structural boundary indicated as extending across the Korean Peninsula at a latitude close to 40°N. Global tectonics and Metallogeny, p.81-102.
34 Kim, H.R., Gaya-Pique, L.R., von Frese, R.R., Taylor, P.T. and Kim, J.W. (2005a) CHAMP magnetic anomalies of the Antarctic Crust. pp. 261-266, Springer Berlin Heidelberg. Earth Observation with CHAMP.
35 Kim, J.W., Hwang, J.S., von Frese, R.R., Kim, H.R. and Lee, S.-H. (2007b) Geomagnetic field modeling from satellite attitude control magnetometer measurements. Journal of Geophysical Research: Solid Earth, v.112. https://doi.org/doi:10.1029/2005JB004042   DOI
36 Kim, H.R., von Frese, R.R., Golynsky, A.V., Taylor, P.T. and Kim, J.W. (2005b) Crustal analysis of maud rise from combined satellite and near-surface magnetic survey data. Earth, Planets and Space, v.57, p.717-726.   DOI
37 Langel, R.A. and Estes, R.H. (1982) A geomagnetic field spectrum. Geophysical Research Letters, v.9, p.250-253.   DOI
38 Langel, R.A. and Hinze, W.J. (1998) The Magnetic Field of the Earth's Lithosphere: The Satellite Perspective. Cambridge University Press.
39 Purucker, M.E., von Frese, R.R. and Taylor, P.T. (1999) Mapping and interpretation of satellite magnetic anomalies from POGO data over the Antarctic region. Annals of Geophysics, v.42.
40 Olsen, N., Ravat, D., Finlay, C.C. and Kother, L.K. (2017) LCS-1: a high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations. Geophysical Journal International, v.211, p.1461-1477. https://doi.org/10.1093/gji/ggx381   DOI
41 Ravat, D., Langel, R.A., Purucker, M., Arkani-Hamed, J. and Alsdorf, D.E. (1995) Global vector and scalar Magsat magnetic anomaly maps. Journal of Geophysical Research: Solid Earth, v.100, p.20111-20136.   DOI
42 Ravat, D., Whaler, K., Pilkington, M., Sabaka, T. and Purucker, M. (2002) Compatibility of high-altitude aeromagnetic and satellite-altitude magnetic anomalies over Canada. Geophysics, v.67, p.546-554.   DOI
43 Regan, R.D., Cain, J.C. and Davis, W.M. (1975) A global magnetic anomaly map. Journal of Geophysical Research, v.80, p.794-802. https://doi.org/10.1029/JB080i005p00794   DOI
44 Sabaka, T.J., Olsen, N., Tyler, R.H. and Kuvshinov, A. (2015) CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Orsted, SAC-C and observatory data. Geophysical Journal International, v.200, p.1596-1626.   DOI
45 Sibuet, J.-C. and Hsu, S.-K. (1997) Geodynamics of the Taiwan arcarc collision. Tectonophysics, v.274, p.221-251. https://doi.org/10.1016/S0040-1951(96)00305-8   DOI
46 Taylor, P.T., Kim, H.R., Kutina, J. and Johnson, G.L. (2008) Geohazard assessment from satellite magnetic data modeling-With examples from the Arctic Margin along the Canada Basin and the Korean Peninsula along 40 (degree) N (latitude) parallel. Earth, Planets and Space, v.60, p.497.   DOI
47 von Frese, R.R., Jones, M.B., Kim, J.W. and Kim, J.-H. (1997) Analysis of anomaly correlations. Geophysics, v.62, p.342-351.   DOI