• Title/Summary/Keyword: derivative and Integral mean inequalities

Search Result 4, Processing Time 0.022 seconds

INTEGRAL MEAN ESTIMATES FOR SOME OPERATOR PRESERVING INEQUALITIES

  • Shabir Ahmad Malik
    • Korean Journal of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.497-506
    • /
    • 2024
  • In this paper, some integral mean estimates for the polar derivative of a polynomial with complex coefficients are proved. We will see that these type of estimates are new in this direction and discuss their importance with respect to existing results comparatively. In addition, the obtained results provide valuable insights into the behavior of integrals involving operator preserving inequalities.

HYPERBOLIC TYPE CONVEXITY AND SOME NEW INEQUALITIES

  • Toplu, Tekin;Iscan, Imdat;Kadakal, Mahir
    • Honam Mathematical Journal
    • /
    • v.42 no.2
    • /
    • pp.301-318
    • /
    • 2020
  • In this paper, we introduce and study the concept of hyperbolic type convexity functions and their some algebraic properties. We obtain Hermite-Hadamard type inequalities for this class of functions. In addition, we obtain some refinements of the Hermite-Hadamard inequality for functions whose first derivative in absolute value, raised to a certain power which is greater than one, respectively at least one, is hyperbolic convexity. Moreover, we compare the results obtained with both Hölder, Hölder-İşcan inequalities and power-mean, improved-power-mean integral inequalities.

LP-TYPE INEQUALITIES FOR DERIVATIVE OF A POLYNOMIAL

  • Wani, Irfan Ahmad;Mir, Mohammad Ibrahim;Nazir, Ishfaq
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.775-784
    • /
    • 2021
  • For the polynomial P(z) of degree n and having all its zeros in |z| ≤ k, k ≥ 1, Jain [6] proved that $${{\max\limits_{{\mid}z{\mid}=1}}\;{\mid}P^{\prime}(z){\mid}{\geq}n\;{\frac{{\mid}c_0{\mid}+{\mid}c_n{\mid}k^{n+1}}{{\mid}c_0{\mid}(1+k^{n+1})+{\mid}c_n{\mid}(k^{n+1}+k^{2n})}\;{\max\limits_{{\mid}z{\mid}=1}}\;{\mid}P(z){\mid}$$. In this paper, we extend above inequality to its integral analogous and there by obtain more results which extended the already proved results to integral analogous.

NEW QUANTUM VARIANTS OF SIMPSON-NEWTON TYPE INEQUALITIES VIA (α, m)-CONVEXITY

  • Saad Ihsan Butt;Qurat Ul Ain;Huseyin Budak
    • Korean Journal of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.161-180
    • /
    • 2023
  • In this article, we will utilize (α, m)-convexity to create a new form of Simpson-Newton inequalities in quantum calculus by using q𝝔1-integral and q𝝔1-derivative. Newly discovered inequalities can be transformed into quantum Newton and quantum Simpson for generalized convexity. Additionally, this article demonstrates how some recently created inequalities are simply the extensions of some previously existing inequalities. The main findings are generalizations of numerous results that already exist in the literature, and some fundamental inequalities, such as Hölder's and Power mean, have been used to acquire new bounds.