DOI QR코드

DOI QR Code

Production of Bio-Carbon from Unused Biomass through CO2 Activation: Removal Characteristics of Formaldehyde and Acetaldehyde

미이용 바이오매스의 이산화탄소 활성화를 통한 바이오카본 생산: 포름알데하이드 및 아세트알데하이드 제거 특성

  • Kim, JongSu (Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology) ;
  • Choi, SeukCheun (Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology) ;
  • Lee, Uendo (Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology) ;
  • Park, EunSeuk (LuftKARE, lnc.) ;
  • Jeong, Soohwa (Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology)
  • 김종수 (한국생산기술연구원 탄소중립산업기술연구부문) ;
  • 최석천 (한국생산기술연구원 탄소중립산업기술연구부문) ;
  • 이은도 (한국생산기술연구원 탄소중립산업기술연구부문) ;
  • 박은석 ((주)루프트케어) ;
  • 정수화 (한국생산기술연구원 탄소중립산업기술연구부문)
  • Received : 2021.11.09
  • Accepted : 2021.11.26
  • Published : 2021.12.31

Abstract

In this study, bio-carbons were produced by activation process from unused biomass (Grade 3 wood pellet and spent coffee grounds) to determine the removal performance of formaldehyde and acetaldehyde. The activation experiments were conducted in a fixed bed reactor using CO2 as an activation agent. The temperature of the activation reactor and input of CO2 were 900 ℃ and 1 L min-1 for all the experiments. The maximum BET surface area of about 788 m2 g-1 was obtained for bio-carbon produced from Grade 1 wood pellet, whereas about 544 m2 g-1 was achieved with bio-carbon produced from spent coffee grounds. In all the experiments, the bio-carbons produced were mainly found to have micro-porous nature. A lower ash amount in raw material was favored for the high surface area of bio-carbons. In the removal test of formaldehyde and acetaldehyde, the bio-carbon produced from spent coffee grounds showed excellent adsorption performance compared with woody biomass (Grade 1 wood pellet and Grade 3 wood pellet). In addition, the comparative experiment of commercial impregnated activated carbon and bio-carbon produced from spent coffee grounds was conducted. In terms of formaldehyde removal performance, the commercial impregnated bio-carbon was excellent, while bio-carbon produced from spent coffee grounds was excellent in acetaldehyde removal.

본 연구에서는 미이용 바이오매스인 3급 목재펠렛 및 커피박을 이용하여 바이오카본을 생산하고 이를 통하여 저분자 극성 휘발성 유기화합물인 포름알데하이드 및 아세트알데하이드 제거 성능 실험을 수행하였다. 바이오카본 생산 실험은 이산화탄소를 활성화제로 사용하여 고정층 반응기에서 수행하였다. 활성화 실험 시 반응온도 900 ℃ 및 이산화탄소 1 L min-1으로 반응조건을 고정하여 진행하였다. 활성화 실험 결과 1급 목재펠렛으로부터 생산한 바이오카본의 BET 비표면적이 약 788 m2 g-1으로 가장 높음을 알 수 있었고 커피박으로부터 생산한 바이오카본이 약 544 m2 g-1으로 가장 낮게 나타났다. 본 실험을 통해 생산된 바이오카본은 대부분 마이크로 기공을 가진 것으로 나타났다. 바이오매스 원료 내 회분의 함량이 낮을수록 바이오카본의 비표면적이 높아지는 것으로 나타났다. 포름알데하이드 및 아세트알데하이드 제거 실험 결과 1급 및 3급 목재펠렛으로 부터 생산한 바이오카본에 비해 커피박으로부터 생산한 바이오카본이 더욱 우수한 흡착 성능을 보여주었다. 추가적으로 상용 첨착 활성탄과 커피박으로부터 생산한 바이오카본의 비교 실험을 진행하였다. 포름알데하이드 제거 성능은 상용 첨착 활성탄이 우수한 반면 아세트알데하이드 제거에는 커피박으로부터 생산한 바이오카본이 우수한 것으로 나타났다.

Keywords

Acknowledgement

본 논문은 한국생산기술연구원 기관주요사업 "휘발성유기화합물(VOCs) 처리를 위한 CO2 활성 바이오카본 생산 및 최적화 기술개발(1/1) (kitech EI-21-0007)"의 지원으로 수행한 연구입니다.

References

  1. Noh, S. Y., Kim, K. H., Choi, J. H., Han, S. D., Kill, I. S., Kim, D. H., and Rhee, Y. W., "Adsorption Characteristics of VOCs in Activated Carbon Beds," J. Korean Soc. Atmos. Environ., 24(4), 455-469 (2008). https://doi.org/10.5572/KOSAE.2008.24.4.455
  2. Vellingiri, K., Kumar, P., and Kim, K. H., "Coordination Polymers: Challenges and Future Scenarios for Capture and Degradation of Volatile Organic Compounds," Nano Res., 9(11), 3181-3208 (2016). https://doi.org/10.1007/s12274-016-1230-7
  3. Rengga, W. D. P., Sudibandriyo, M., and Nasikin, M., "Adsorption of Low-Concentration Formaldehyde from Air by Silver and Copper Nano-Particles Attached on Bamboo-Based Activated Carbon," Int. J. Chem. Eng. Appl., 4(5), 332-336 (2013).
  4. Ham, K. J., Park, M. S., and Choi, K. Y., "Investigation of Liquid Phase Formaldehyde Removal Efficiency by Enzymatic Formaldehyde Dehydrogenase and Catalytic Chemisorption Reactions," Appl. Chem. Eng., 28(1), 50-56 (2017). https://doi.org/10.14478/ACE.2016.1100
  5. Shin, S. K., Kang, J. H., and Song, J. H., "Removals of Formaldehyde by Silver Nano Particles Attached on the Surface of Activated Carbon," J. Korean Soc. Environ. Eng., 32(10), 936-941 (2010).
  6. Ryu, D. Y., Shimohara, T., Nakabayashi, K., Miyawaki, J., Park, J. I., and Yoon, S. H., "Urea/nitric Acid Co-impregnated Pitch-based Activated Carbon Fiber for the Effective Removal of Formaldehyde," J. Ind. Eng. Chem., 80, 98-105 (2019). https://doi.org/10.1016/j.jiec.2019.07.036
  7. Baur, G. B., Yuranov, I., and Kiwi-Minsker, L., "Activated Carbon Fibers Modified by Metal Oxide as Effective Structured Adsorbents for Acetaldehyde," Catal. Today, 249, 252-258 (2015). https://doi.org/10.1016/j.cattod.2014.11.021
  8. Setter, C., Silva, F. T. M., Assis, M. R., Ataide, C. H., Trugilho, P. F., and Oliveira, T. J. P., "Slow Pyrolysis of Coffee Husk Briquettes: Characterization of the Solid and Liquid Fractions," Fuel, 261, 116420 (2020). https://doi.org/10.1016/j.fuel.2019.116420
  9. Rodriguez-Reinoso, F., Molina-Sabio, M., and Gonzalez, M. T., "The Use of steam and CO2 as Activating Agents in the Preparation of Activated Carbons," Carbon, 33(1), 15-23 (1995). https://doi.org/10.1016/0008-6223(94)00100-E
  10. Zhang, T., Walawender, W. P., Fan, L. T., Fan, M., Daugaard, D., and Brown, R. C., "Preparation of Activated Carbon from Forest and Agricultural Residues Through CO2 Activation," Chem. Eng. J., 105(1-2), 53-59 (2004). https://doi.org/10.1016/j.cej.2004.06.011
  11. Namane, A., Mekarzia, A., Benrachedi, K., Belhaneche-Bensemra, N., and Hellal, A., "Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4," J. Hazard. Mater., 119(1-3), 189-194 (2005). https://doi.org/10.1016/j.jhazmat.2004.12.006
  12. Jung, S. H., Oh, S. J., Choi, G. G., and Kim, J. S., "Production and Characterization of Microporous Activated Carbons and Metallurgical Bio-coke from Waste Shell Biomass," J. Anal. Appl. Pyrolysis, 109, 123-131 (2014). https://doi.org/10.1016/j.jaap.2014.07.003
  13. Jung, S. H., and Kim, J. S., "Production of Biochars by Intermediate Pyrolysis and Activated Carbons from Oak by three Activation Methods Using CO2," J. Anal. Appl. Pyrolysis, 107, 116-122 (2014). https://doi.org/10.1016/j.jaap.2014.02.011
  14. Daud, W. M. A. W., and Ali, W. S. W., "Comparison on Pore Development of Activated Carbon Produced from Palm Shell and Coconut Shell," Bioresour. Technol., 93(1), 63-69 (2004). https://doi.org/10.1016/j.biortech.2003.09.015
  15. Liu, Y., Jia, H., Li, C., Sun, Z., Pan, Y., and Zheng, S., "Efficient Removal of Gaseous Formaldehyde by Amine-modified Diatomite: a Combined Experimental and Density Functional Theory Study," Environ. Sci. Pollut. Res., 26(24), 25130-25141 (2019). https://doi.org/10.1007/s11356-019-05758-y
  16. Nandiyanto, A. B. D., Oktiani, R., and Ragadhita, R., "How to Read and Interpret FTIR Spectroscope of Organic Material," Indones. J. Sci. Technol., 4(1), 97-118 (2019). https://doi.org/10.17509/ijost.v4i1.15806