DOI QR코드

DOI QR Code

수온별 아질산 급성 노출에 따른 넙치, Paralichthys olivaceus의 혈액학적 성상 및 혈장성분의 영향

Effects of hematological parameters and plasma components of olive flounder, Paralichthys olivaceus by acute nitrite exposure according to water temperature

  • 홍수민 (선문대학교 수산생명의학과) ;
  • 조아현 (선문대학교 수산생명의학과) ;
  • 김다은 (선문대학교 수산생명의학과) ;
  • 박연숙 (선문대학교 수산생명의학과) ;
  • 이혜성 (선문대학교 수산생명의학과) ;
  • 전유현 (국립수산과학원 서해수산연구소) ;
  • 김석렬 (공주대학교 스마트수산자원학과) ;
  • 김대희 (국립수산과학원 서해수산연구소) ;
  • 강예재 (선문대학교 수산생명의학과) ;
  • 김준환 (선문대학교 수산생명의학과)
  • Hong, Su-Min (Sun Moon University, Department of Aquatic Life and Medical Science) ;
  • Jo, A-Hyun (Sun Moon University, Department of Aquatic Life and Medical Science) ;
  • Kim, Da-Eun (Sun Moon University, Department of Aquatic Life and Medical Science) ;
  • Park, Yeon-Sook (Sun Moon University, Department of Aquatic Life and Medical Science) ;
  • Lee, Hye-Sung (Sun Moon University, Department of Aquatic Life and Medical Science) ;
  • Jeon, Yu-Hyeon (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Seok-Ryel (Dept. of Smart Fisheries Resources, Kongju National University) ;
  • Kim, Dae-Hee (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kang, Yue Jai (Sun Moon University, Department of Aquatic Life and Medical Science) ;
  • Kim, Jun-Hwan (Sun Moon University, Department of Aquatic Life and Medical Science)
  • 투고 : 2021.08.31
  • 심사 : 2021.10.19
  • 발행 : 2021.12.31

초록

Olive flounder (Paralichthys olivaceus) (Weight 110.9±17.1 g, length 22.3±1.2 cm) were exposed to waterborne nitrite at 0, 30, 60, 120, 240, 480 and 960 mg NO2-/L according to water temperature at 20℃ and 25℃ for 96 hours. The lethal concentration 50 (LC50) of olive flounder, P. olivaceus exposed to waterborne nitrite was 513.87 mg NO2-/L at 20℃ and 208.35 mg NO2-/L at 25℃, which means a significant difference in LC50 by the water temperature. Hemoglobin and hematocrit were significantly decreased by waterborne nitrite exposure. The inorganic component, plasma calcium, was significantly decreased, and the organic components such as plasma glucose and cholesterol were significantly decreased showing a similar tendency with calcium. In enzymatic components, the AST and ALP were also significantly decreased by nitrite exposure. The results of this study indicate that exposure to nitrite can affect the survival and hematological physiology of P. olivaceus, and the effect of exposure to nitrite had a significant effect on nitrite toxicity depending on the water temperature.

키워드

과제정보

이 논문은 2021년 국립수산과학원 '바이오플락을 이용한 해수양식 기술개발(대하, 넙치)(R2021014)'의 지원으로 수행된 연구입니다.

참고문헌

  1. Abdel-Tawwab, M. and Wafeek, M.: Fluctuations in water temperature affected waterborne cadmium toxicity: hematology, anaerobic glucose pathway, and oxidative stress status of Nile tilapia, Oreochromis niloticus (L.). Aquaculture 477: 106-111, 2017. https://doi.org/10.1016/j.aquaculture.2017.05.007
  2. Bita, S., Balouch, A. and Mohammadian, T.: Determination of lethal concentration (LC50) of silver nanoparticles produced by biological and chemical methods in Asian seabass fish. International Journal of Aquatic Research 1: 7-12, 2021.
  3. Cho, J.H., Kim, S.R., Hur, Y.B., Lee, K.M. and Kim, J.H.: Tolerance limit of nitrite exposure to hybrid grouper (Epinephelus fuscoguttatus♀× E. lanceolatus♂): hematological parameters and plasma components. Korean Journal of Environmental Biology 38: 93-100, 2020. https://doi.org/10.11626/KJEB.2020.38.1.093
  4. da Costa, O.T.F., dos Santos Ferreira, D.J., Mendonca, F.L.P. and Fernandes, M.N.: Susceptibility of the Amazonian fish, Colossoma macropomum (Serrasalminae), to short-term exposure to nitrite. Aquaculture 232: 627-636, 2004. https://doi.org/10.1016/S0044-8486(03)00524-6
  5. Das, P.C., Ayyappan, S., Jena, J.K. and Das, B.K.: Nitrite toxicity in Cirrhinus mrigala (Ham.): acute toxicity and sub-lethal effect on selected haematological parameters. Aquaculture 235: 633-644, 2004. https://doi.org/10.1016/j.aquaculture.2004.01.020
  6. David, M., Mushigeri, S.B., Shivakumar, R. and Philip, G.H.: Response of Cyprinus carpio (Linn) to sublethal concentration of cypermethrin: alterations in protein metabolic profiles. Chemosphere 56: 347-352, 2004. https://doi.org/10.1016/j.chemosphere.2004.02.024
  7. de Oliveira, P.R., Bechara, G.H., Denardi, S.E., Pizano, M.A. and Mathias, M.I.C.: Toxicity effect of the acaricide fipronil in semi-engorged females of the tick Rhipicephalus sanguineus (Latreille, 1806)(Acari: Ixodidae): Preliminary determination of the minimum lethal concentration and LC50. Experimental Parasitology 127: 418-422, 2011. https://doi.org/10.1016/j.exppara.2010.09.009
  8. dos Santos Silva, MJ., da Costa, F.F.B., Leme, F.P., Takata, R., Costa, D.C., Mattioli, C.C. and Miranda-Filho, K.C.: Biological responses of Neotropical freshwater fish Lophiosilurus alexandri exposed to ammonia and nitrite. Science of The Total Environment 616: 1566-1575, 2018. https://doi.org/10.1016/j.scitotenv.2017.10.157
  9. Gao, X.Q., Fei, F., Huo, H.H., Huang, B., Meng, X.S., Zhang, T. and Liu, B.L.: Effect of acute exposure to nitrite on physiological parameters, oxidative stress, and apoptosis in Takifugu rubripes. Ecotoxicology and Environmental Safety 188: 109878, 2020. https://doi.org/10.1016/j.ecoenv.2019.109878
  10. Huertas, M., Gisbert, E., Rodriguez, A., Cardona, L., Williot, P. and Castello-Orvay, F.: Acute exposure of Siberian sturgeon (Acipenser baeri, Brandt) yearlings to nitrite: median-lethal concentration (LC50) determination, haematological changes and nitrite accumulation in selected tissues. Aquatic Toxicology 57: 257-266. 2002 https://doi.org/10.1016/S0166-445X(01)00207-7
  11. Ibrahim, A.T.A.: Toxicological impact of green synthesized silver nanoparticles and protective role of different selenium type on Oreochromis niloticus: hematological and biochemical response. Journal of Trace Elements in Medicine and Biology 61: 126507, 2020. https://doi.org/10.1016/j.jtemb.2020.126507
  12. Jensen, F.B.: Nitrite disrupts multiple physiological functions in aquatic animals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 135: 9-24, 2003. https://doi.org/10.1016/S1095-6433(02)00323-9
  13. Jia, R., Liu, B.L., Han, C., Huang, B. and Lei, J.L.: The physiological performance and immune response of juvenile turbot (Scophthalmus maximus) to nitrite exposure. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 181: 40-46, 2016. https://doi.org/10.1016/j.cbpc.2016.01.002
  14. Kim, J.H., Kim, J.Y., Lim, L.J., Kim, S.K., Choi, H.S. and Hur, Y.B.: Effects of waterborne nitrite on hematological parameters and stress indicators in olive flounders, Paralichthys olivaceus, raised in bio-floc and seawater. Chemosphere 209: 28-34, 2018. https://doi.org/10.1016/j.chemosphere.2018.06.082
  15. Kim, J.H., Kim, S.K. and Hur, Y.B.: Temperature-mediated changes in stress responses, acetylcholinesterase, and immune responses of juvenile olive flounder Paralichthys olivaceus in a bio-floc environment. Aquaculture 506: 453-458, 2019a. https://doi.org/10.1016/j.aquaculture.2019.03.045
  16. Kim, J.H., Kang, Y.J., Kim, K.I., Kim, S.K. and Kim, J.H.: Toxic effects of nitrogenous compounds (ammonia, nitrite, and nitrate) on acute toxicity and antioxidant responses of juvenile olive flounder, Paralichthys olivaceus. Environmental Toxicology and Pharmacology 67: 73-78, 2019b. https://doi.org/10.1016/j.etap.2019.02.001
  17. Kim, J.H., Kim, S.K. and Hur, Y.B.: Hematological parameters and antioxidant responses in olive flounder Paralichthys olivaceus in biofloc depend on water temperature. Journal of Thermal Biology 82: 206-212, 2019c. https://doi.org/10.1016/j.jtherbio.2019.04.013
  18. Kim, J.H., Kim, S.K. and Hur, Y.B.: Toxic effects of waterborne nitrite exposure on antioxidant responses, acetylcholinesterase inhibition, and immune responses in olive flounders, Paralichthys olivaceus, reared in bio-floc and seawater. Fish & Shellfish Immunology 97: 581-586, 2020a. https://doi.org/10.1016/j.fsi.2019.12.059
  19. Kim, J.H., Sohn, S., Kim, S.K. and Hur, Y.B.: Effects on hematological parameters, antioxidant and immune responses, AChE, and stress indicators of olive flounders, Paralichthys olivaceus, raised in bio-floc and seawater challenged by Edwardsiella tarda. Fish & shellfish immunology 97: 194-203, 2020b. https://doi.org/10.1016/j.fsi.2019.12.011
  20. Kim, J.H., Kim, S.R., Kim, S.K. and Kang, H.W.: Effects of pH changes on blood physiology, antioxidant responses and Ig M of juvenile olive flounder, Paralichthys olivaceus. Aquaculture Reports 21: 100790, 2021. https://doi.org/10.1016/j.aqrep.2021.100790
  21. Korwin-Kossakowski, M. and Ostaszewska, T.: Histopathological changes in juvenile carp Cyprinus carpio L. continuously exposed to high nitrite levels from hatching. Fisheries & Aquatic Life 11: 57-67, 2003.
  22. Kroupova, H., Machova, J. and Svobodova, Z.: Nitrite influence on fish: a review. Veterinarni medicina-praha-, 50: 461-471, 2005.
  23. Kroupova, H., Machova, J., Piackova, V., Flajshans, M., Svobodova, Z. and Poleszczuk, G.: Nitrite intoxication of common carp (Cyprinus carpio L.) at different water temperatures. Acta Veterinaria Brno 75: 561-569, 2006. https://doi.org/10.2754/avb200675040561
  24. Kroupova, H., Machova, J., Piackova, V., Blahova, J., Dobsikova, R., Novotny, L. and Svobodova, Z.: Effects of subchronic nitrite exposure on rainbow trout (Oncorhynchus mykiss). Ecotoxicology and Environmental Safety 71: 813-820, 2008. https://doi.org/10.1016/j.ecoenv.2008.01.015
  25. Kumar, N., Gupta, S.K., Bhushan, S. and Singh, N.P.: Impacts of acute toxicity of arsenic (III) alone and with high temperature on stress biomarkers, immunological status and cellular metabolism in fish. Aquatic Toxicology 214: 105233, 2019. https://doi.org/10.1016/j.aquatox.2019.105233
  26. Lee, J.W., Choi, H., Hwang, U.K., Kang, J.C., Kang, Y.J., Kim, K.I. and Kim, J.H.: Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environmental Toxicology and Pharmacology 68: 101-108, 2019. https://doi.org/10.1016/j.etap.2019.03.010
  27. Lefevre, S., Jensen, F.B., Huong, D.T., Wang, T., Phuong, N.T. and Bayley, M.: Haematological and ion regulatory effects of nitrite in the air-breathing snakehead fish Channa striata. Aquatic Toxicology 118: 48-53, 2012. https://doi.org/10.1016/j.aquatox.2012.03.011
  28. Lek, S., Ut, V.N. and Phuong, N.T.: Effects of nitrite at different temperatures on physiological parameters and growth in clown knifefish (Chitala ornata, Gray 1831). Aquaculture 521: 735060, 2020. https://doi.org/10.1016/j.aquaculture.2020.735060
  29. Lemus, M.J. and Chung, K.S.: Effect of Temperature on Copper Toxicity, Accumulation, and Purification in Tropical Fish Juveniles Petenia kraussii (Pisces: Cichlidae). Caribbean Journal of Science 35: 64-69, 1999.
  30. Lin, Y., Miao, L.H., Pan, W.J., Huang, X., Dengu, J.M., Zhang, W.X. and Xi, B.W.: Effect of nitrite exposure on the antioxidant enzymes and glutathione system in the liver of bighead carp, Aristichthys nobilis. Fish & Shellfish Immunology 76: 126-132, 2018. https://doi.org/10.1016/j.fsi.2018.02.015
  31. Lim, H.K., Han, H.S. and Hur, J.W.: Effects of water temperature changes on oxygen consumption and hematological factors in olive flounder Paralichthys olivaceus. Fisheries and Aquatic Sciences 24: 99-107, 2021. https://doi.org/10.47853/FAS.2021.e10
  32. Malarvizhi, A., Kavitha, C., Saravanan, M. and Ramesh, M.: Carbamazepine (CBZ) induced enzymatic stress in gill, liver and muscle of a common carp, Cyprinus carpio. Journal of King Saud University-Science 24: 179-186, 2012. https://doi.org/10.1016/j.jksus.2011.01.001
  33. Madison, B.N. and Wang, Y.S.: Haematological responses of acute nitrite exposure in walleye (Sander vitreus). Aquatic Toxicology 79: 16-23, 2006. https://doi.org/10.1016/j.aquatox.2006.04.011
  34. Metz, J.R., Van Den Burg, E.H., Bonga, S.E.W. and Flik, G.: Regulation of branchial Na+/K+-ATPase in common carp Cyprinus carpio L. acclimated to different temperatures. Journal of Experimental Biology 206: 2273-2280, 2003. https://doi.org/10.1242/jeb.00421
  35. Park, I.S., Lee, J., Hur, J.W., Song, Y.C., Na, H.C. and Noh, C.H.: Acute toxicity and sublethal effects of nitrite on selected hematological parameters and tissues in dark-banded rockfish, Sebastes inermis. Journal of the World Aquaculture Society 38: 188-199, 2007. https://doi.org/10.1111/j.1749-7345.2007.00088.x
  36. Qu, J., Yang, H., Liu, Y., Qi, H., Wang, Y. and Zhang, Q.: The study of natural biofilm formation and microbial community structure for recirculating aquaculture system. In IOP Conference Series: Earth and Environmental Science (Vol. 742, No. 1, p. 012018). IOP Publishing, 2021. https://doi.org/10.1088/1755-1315/742/1/012018
  37. Ramesh, M., Anitha, S., Poopal, R.K. and Shobana, C.: Evaluation of acute and sublethal effects of chloroquine (C18H26CIN3) on certain enzymological and histopathological biomarker responses of a freshwater fish Cyprinus carpio. Toxicology Reports 5: 18-27, 2018. https://doi.org/10.1016/j.toxrep.2017.11.006
  38. Roques, J.A., Schram, E., Spanings, T., van Schaik, T., Abbink, W., Boerrigter, J. and Flik, G.: The impact of elevated water nitrite concentration on physiology, growth and feed intake of African catfish Clarias gariepinus (Burchell 1822). Aquaculture Research 46: 1384-1395, 2015. https://doi.org/10.1111/are.12292
  39. Sathya, V., Ramesh, M., Poopal, R.K. and Dinesh, B.: Acute and sublethal effects in an Indian major carp Cirrhinus mrigala exposed to silver nitrate: Gill Na+/K+-ATPase, plasma electrolytes and biochemical alterations. Fish & shellfish immunology, 32: 862-868, 2012. https://doi.org/10.1016/j.fsi.2012.02.014
  40. Sohn, S.G., Lee, Y.S., Kim, K.S., Lee, H.N., Lee, J.Y. and Back, S.J.: Acute toxicity of nitrite on juvenile banded catfish(Pseudobagurus fulvidraco). JFMSE 27: 41-48, 2015. https://doi.org/10.13000/JFMSE.2015.27.1.41
  41. Wan, J., Ge, X., Liu, B., Xie, J., Cui, S., Zhou, M., Xia, S. and Chen, R.: Effect of dietary vitamin C on non-specific immunity and mRNA expression of three heat shock proteins (HSPs) in juvenile Megalobrama amblycephala under pH stress. Aquaculture 434: 325-333, 2014. https://doi.org/10.1016/j.aquaculture.2014.08.043
  42. Woo, N.Y.S. and Chiu, S.F.: Metabolic and osmoregulatory responses of the sea bass Lates calcarifer to nitrite exposure. Environmental Toxicology and Water Quality: An International Journal 12: 257-264, 1997. https://doi.org/10.1002/(SICI)1098-2256(1997)12:3<257::AID-TOX9>3.0.CO;2-7
  43. Wuertz, S., Schulze, S.G.E., Eberhardt, U., Schulz, C. and Schroeder, J.P.: Acute and chronic nitrite toxicity in juvenile pike-perch (Sander lucioperca) and its compensation by chloride. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 157: 352-360. 2013. https://doi.org/10.1016/j.cbpc.2013.01.002
  44. Yildiz, H.Y., Koksal, G., Borazan, G. and Benli, C.K.: Nitrite-induced methemoglobinemia in Nile tilapia, Oreochromis niloticus. Journal of Applied Ichthyology 22: 427-426, 2006.
  45. Yu, J., Xiao, Y., Wang, Y., Xu, S., Zhou, L., Li, J. and Li, X.: Chronic nitrate exposure cause alteration of blood physiological parameters, redox status and apoptosis of juvenile turbot (Scophthalmus maximus). Environmental Pollution 283: 117103, 2021. https://doi.org/10.1016/j.envpol.2021.117103
  46. Yunus, K., Jaafar, A.M. and Akbar, J.: Acute-lethal toxicity (LC50) Effect of Terminalia Catappa Linn. leaves extract on Oreochromis Niloticus (Red Nile Tilapia) juveniles under static toxicity exposure. Oriental Journal of Chemistry 35: 270-274, 2019. https://doi.org/10.13005/ojc/350132
  47. Zhang, M., Yin, X., Li, M., Wang, R., Qian, Y. and Hong, M.: Effect of nitrite exposure on haematological status, oxidative stress, immune response and apoptosis in yellow catfish (Pelteobagrus fulvidraco). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 238: 108867, 2020. https://doi.org/10.1016/j.cbpc.2020.108867
  48. Zhang, Y., Liang, X.F., He, S. and Li, L.: Effects of long-term low-concentration nitrite exposure and detoxification on growth performance, antioxidant capacities, and immune responses in Chinese perch (Siniperca chuatsi). Aquaculture 533: 736123, 2021. https://doi.org/10.1016/j.aquaculture.2020.736123