DOI QR코드

DOI QR Code

DISCONTINUOUS GALERKIN SPECTRAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS BASED ON FIRST-ORDER HYPERBOLIC SYSTEM

  • KIM, DEOKHUN (SCHOOL OF NAVAL ARCHITECTURE AND OCEAN ENGINEERING, UNIVERSITY OF ULSAN) ;
  • AHN, HYUNG TAEK (SCHOOL OF NAVAL ARCHITECTURE AND OCEAN ENGINEERING, UNIVERSITY OF ULSAN)
  • Received : 2021.09.07
  • Accepted : 2021.11.12
  • Published : 2021.12.25

Abstract

A new implicit discontinuous Galerkin spectral element method (DGSEM) based on the first order hyperbolic system(FOHS) is presented for solving elliptic type partial different equations, such as the Poisson problems. By utilizing the idea of hyperbolic formulation of Nishikawa[1], the original Poisson equation was reformulated in the first-order hyperbolic system. Such hyperbolic system is solved implicitly by the collocation type DGSEM. The steady state solution in pseudo-time, which is the solution of the original Poisson problem, was obtained by the implicit solution of the global linear system. The optimal polynomial orders of 𝒪(𝒽𝑝+1)) are obtained for both the solution and gradient variables from the test cases in 1D and 2D regular grids. Spectral accuracy of the solution and gradient variables are confirmed from all test cases of using the uniform grids in 2D.

Keywords

Acknowledgement

This work was supported by the National Supercomputing Center with supercomputing resources including technical support (KSC-2020-CRE-0119).

References

  1. H. Nishikawa, A first-order system approach for diffusion equation. I: Second-order residual-distribution schemes, Journal of Computational Physics, 227(1) (2007) 315-352. https://doi.org/10.1016/j.jcp.2007.07.029
  2. W. Reed, T. Hill, Triangular mesh methods for the neutron transport equation, Technical Report, Los Alamos Scientific Laboratory/LA-UR-73-479 (1973)
  3. B. Cockburn, C.W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, Journal of Scientific Computing 16 (3) (2001), 173-261. https://doi.org/10.1023/A:1012873910884
  4. B. Cockburn, C.W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Mathematics of computation 52 (186) (1989), 411-435. https://doi.org/10.1090/S0025-5718-1989-0983311-4
  5. B. Cockburn, S.Y. Lin, C.W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems, Journal of Computational Physics 84(1) (1989), 90-113. https://doi.org/10.1016/0021-9991(89)90183-6
  6. B. Cockburn, S. Hou, C.W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Mathematics of Computation 54 (190) (1990), 545-581. https://doi.org/10.1090/S0025-5718-1990-1010597-0
  7. B. Cockburn, C.W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, Journal of Computational Physics 141 (2) (1998), 199-224. https://doi.org/10.1006/jcph.1998.5892
  8. D. Xiu, J.S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM Journal on Scientific Computing 27 (3) (2005), 1118-1139. https://doi.org/10.1137/040615201
  9. J.S. Hesthaven, T. Warburton, Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell's equations, Journal of Computational Physics 181 (1) (2002) 186-221. https://doi.org/10.1006/jcph.2002.7118
  10. D. Gottlieb, J.S. Hesthaven, Spectral methods for hyperbolic problems, Journal of Computational and Applied Mathematics 128 (1-2) (2001), 83-131. https://doi.org/10.1016/S0377-0427(00)00510-0
  11. H. Luo, J.D. Baum, R. Lohner, A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids, Journal of Computational Physics 227 (20) (2008) 8875-8893. https://doi.org/10.1016/j.jcp.2008.06.035
  12. H. Luo, L. Luo, R. Nourgaliev, V.A. Mousseau, N. Dinh, A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids, Journal of Computational Physics 229 (19) (2010) 6961-6978. https://doi.org/10.1016/j.jcp.2010.05.033
  13. Y. Liu, M. Vinokur, Z.J. Wang, Spectral difference method for unstructured grids I: basic formulation, Journal of Computational Physics 216 (2) (2006) 780-801. https://doi.org/10.1016/j.jcp.2006.01.024
  14. J.S. Hesthaven, T. Warburton, Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, Springer Science & Business Media, 2007.
  15. J.S. Hesthaven, Numerical methods for conservation laws: From analysis to algorithms, Society for Industrial and Applied Mathematics, 2017.
  16. D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Discontinuous Galerkin methods for elliptic problems, Discontinuous Galerkin Methods, Springer, Berlin, Heidelberg, 2000, 89-101.
  17. D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM journal on numerical analysis 39 (5) (2002), 1749-1779. https://doi.org/10.1137/S0036142901384162
  18. B. Cockburn, C.W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM Journal on Numerical Analysis 35 (6) (1998), 2440-2463. https://doi.org/10.1137/S0036142997316712
  19. J. Peraire, P.O. Persson, The compact discontinuous Galerkin (CDG) method for elliptic problems, SIAM Journal on Scientific Computation, 30 (4) (2008), 1806-1824. https://doi.org/10.1137/070685518
  20. D. Arnold, An interior penalty finite element method with discontinuous elements, SIAM Journal on Numerical Analysis 19(4) (1982) 742-760. https://doi.org/10.1137/0719052
  21. F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, Journal of Computational Physics 131 (1997), 267-279. https://doi.org/10.1006/jcph.1996.5572
  22. F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini, A high-order accurate discontinuous finite element method fir inviscid an viscous turbomachinery flows, 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Technologisch Instituut, Antwerpen, Belgium, 1997. 99-109.
  23. H. Nishikawa, First-, second-, and third-order finite-volume schemes for diffusion, Journal of Computational Physics 256 (2014) 791-805. https://doi.org/10.1016/j.jcp.2013.09.024
  24. H. Nishikawa, First-, second-, and third order finite-volume schemes for advection-diffusion, Journal of Computational Physics 273 (2014) 287-309. https://doi.org/10.1016/j.jcp.2014.05.021
  25. H. Nishikawa, New-Generation hyperbolic Navier-Stokes schemes: O(1/h) speed-up and accurate viscous/heat fluxes, 20th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii, USA, 2011, 2011-3043.
  26. Y. Nakashima, N. Watanabe, H. Nishikawa, Hyperbolic Navier-Stokes solver for three-dimensional flows, 54th AIAA Aerospace Science Meeting, San Diego, California, USA, 2016, 2016-1101.
  27. E. Lee, H.T. Ahn, H. Luo, Cell-centered high-order hyperbolic finite volume method for diffusion equation on unstructured grids, Journal of Computational Physics 335 (2018) 464-491.
  28. H. Nishikawa, A first-order system approach for diffusion equation. II: Unification of advection and diffusion, Journal of Computational Physics, 229(11) (2010) 3989-4019 https://doi.org/10.1016/j.jcp.2009.10.040
  29. A. Mazaheri, H. Nishikawa, First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems, NASA Technical Reports, NASA/TM-2014-218175 (2014)
  30. J. Lou, L. Li, H. Luo, H. Nishikawa, Reconstructed discontinuous Galerkin methods for linear advection-diffusion equations based on first-order hyperbolic system, Journal of Computational Physics 369 (2018) 103-124. https://doi.org/10.1016/j.jcp.2018.04.058
  31. L. Li, J. Lou, H. Luo, H. Nishikawa, High-order hyperbolic Navier-Stokes reconstructed discontinuous Galerkin method, Scitech 2019 Forum, San Diego, California, USA, 2019, 2019-1150
  32. L. Li, J. Lou, H. Luo, H. Nishikawa, High-order hyperbolic Navier-Stokes reconstructed discontinuous Galerkin method for unsteady flows, AIAA Aviation 2019 Forum, Dallas, Texas, USA, 2019, 2019-3060
  33. D.A. Kopriva, Implementing spectral methods for partial differential equations: Algorithms for scientists and engineers, Springer Science & Business Media, 2009.
  34. D.A. Kopriva, J.H. Kolias, A conservative staggered-grid Chebyshev multidomain method for compressible flows, Journal of Computational Physics 125 (1) (1996) 244-261. https://doi.org/10.1006/jcph.1996.0091
  35. D.A. Kopriva, A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method, Journal of Computational Physics 128 (2) (1996) 475-488. https://doi.org/10.1006/jcph.1996.0225
  36. D.A. Kopriva, A staggered-grid multidomain spectral method for the compressible Navier-Stokes equations, Journal of Computational Physics 143 (1) (1998) 125-158. https://doi.org/10.1006/jcph.1998.5956
  37. D.A. Kopriva, G.J. Gassner, On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods, SIAM Journal on Scientific Computation. 44 (2) (2010) 136-155.
  38. D.A. Kopriva, G.J. Gassner, An energy stable discontinuous Galerkin spectral element discretization for variable coefficient advection problems, SIAM Journal on Scientific Computation. 36 (4) (2014) A2076-A2099. https://doi.org/10.1137/130928650
  39. G.J. Gassner, A.R. Winters, D.A. Kopriva, Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J. Comput. Phys. 327 (2016) 39-66. https://doi.org/10.1016/j.jcp.2016.09.013
  40. F. Hindenlang, G.J. Gassner, C. Altmann, A. Beck, M. Staudenmaier, C.D. Munz, Explicit discontinuous Galerkin methods for unsteady problems, Comput. Fluids 61 (2012) 86-93. https://doi.org/10.1016/j.compfluid.2012.03.006
  41. H. Luo, J. Baum, R. Lohner, J. Cabello, Implicit schemes and boundary conditions for compressible flows on unstructured grids, 32nd Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 1994, 1994-816.