Acknowledgement
This work was supported by the National Supercomputing Center with supercomputing resources including technical support (KSC-2020-CRE-0119).
References
- H. Nishikawa, A first-order system approach for diffusion equation. I: Second-order residual-distribution schemes, Journal of Computational Physics, 227(1) (2007) 315-352. https://doi.org/10.1016/j.jcp.2007.07.029
- W. Reed, T. Hill, Triangular mesh methods for the neutron transport equation, Technical Report, Los Alamos Scientific Laboratory/LA-UR-73-479 (1973)
- B. Cockburn, C.W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, Journal of Scientific Computing 16 (3) (2001), 173-261. https://doi.org/10.1023/A:1012873910884
- B. Cockburn, C.W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Mathematics of computation 52 (186) (1989), 411-435. https://doi.org/10.1090/S0025-5718-1989-0983311-4
- B. Cockburn, S.Y. Lin, C.W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems, Journal of Computational Physics 84(1) (1989), 90-113. https://doi.org/10.1016/0021-9991(89)90183-6
- B. Cockburn, S. Hou, C.W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Mathematics of Computation 54 (190) (1990), 545-581. https://doi.org/10.1090/S0025-5718-1990-1010597-0
- B. Cockburn, C.W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, Journal of Computational Physics 141 (2) (1998), 199-224. https://doi.org/10.1006/jcph.1998.5892
- D. Xiu, J.S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM Journal on Scientific Computing 27 (3) (2005), 1118-1139. https://doi.org/10.1137/040615201
- J.S. Hesthaven, T. Warburton, Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell's equations, Journal of Computational Physics 181 (1) (2002) 186-221. https://doi.org/10.1006/jcph.2002.7118
- D. Gottlieb, J.S. Hesthaven, Spectral methods for hyperbolic problems, Journal of Computational and Applied Mathematics 128 (1-2) (2001), 83-131. https://doi.org/10.1016/S0377-0427(00)00510-0
- H. Luo, J.D. Baum, R. Lohner, A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids, Journal of Computational Physics 227 (20) (2008) 8875-8893. https://doi.org/10.1016/j.jcp.2008.06.035
- H. Luo, L. Luo, R. Nourgaliev, V.A. Mousseau, N. Dinh, A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids, Journal of Computational Physics 229 (19) (2010) 6961-6978. https://doi.org/10.1016/j.jcp.2010.05.033
- Y. Liu, M. Vinokur, Z.J. Wang, Spectral difference method for unstructured grids I: basic formulation, Journal of Computational Physics 216 (2) (2006) 780-801. https://doi.org/10.1016/j.jcp.2006.01.024
- J.S. Hesthaven, T. Warburton, Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, Springer Science & Business Media, 2007.
- J.S. Hesthaven, Numerical methods for conservation laws: From analysis to algorithms, Society for Industrial and Applied Mathematics, 2017.
- D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Discontinuous Galerkin methods for elliptic problems, Discontinuous Galerkin Methods, Springer, Berlin, Heidelberg, 2000, 89-101.
- D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM journal on numerical analysis 39 (5) (2002), 1749-1779. https://doi.org/10.1137/S0036142901384162
- B. Cockburn, C.W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM Journal on Numerical Analysis 35 (6) (1998), 2440-2463. https://doi.org/10.1137/S0036142997316712
- J. Peraire, P.O. Persson, The compact discontinuous Galerkin (CDG) method for elliptic problems, SIAM Journal on Scientific Computation, 30 (4) (2008), 1806-1824. https://doi.org/10.1137/070685518
- D. Arnold, An interior penalty finite element method with discontinuous elements, SIAM Journal on Numerical Analysis 19(4) (1982) 742-760. https://doi.org/10.1137/0719052
- F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, Journal of Computational Physics 131 (1997), 267-279. https://doi.org/10.1006/jcph.1996.5572
- F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini, A high-order accurate discontinuous finite element method fir inviscid an viscous turbomachinery flows, 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Technologisch Instituut, Antwerpen, Belgium, 1997. 99-109.
- H. Nishikawa, First-, second-, and third-order finite-volume schemes for diffusion, Journal of Computational Physics 256 (2014) 791-805. https://doi.org/10.1016/j.jcp.2013.09.024
- H. Nishikawa, First-, second-, and third order finite-volume schemes for advection-diffusion, Journal of Computational Physics 273 (2014) 287-309. https://doi.org/10.1016/j.jcp.2014.05.021
- H. Nishikawa, New-Generation hyperbolic Navier-Stokes schemes: O(1/h) speed-up and accurate viscous/heat fluxes, 20th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii, USA, 2011, 2011-3043.
- Y. Nakashima, N. Watanabe, H. Nishikawa, Hyperbolic Navier-Stokes solver for three-dimensional flows, 54th AIAA Aerospace Science Meeting, San Diego, California, USA, 2016, 2016-1101.
- E. Lee, H.T. Ahn, H. Luo, Cell-centered high-order hyperbolic finite volume method for diffusion equation on unstructured grids, Journal of Computational Physics 335 (2018) 464-491.
- H. Nishikawa, A first-order system approach for diffusion equation. II: Unification of advection and diffusion, Journal of Computational Physics, 229(11) (2010) 3989-4019 https://doi.org/10.1016/j.jcp.2009.10.040
- A. Mazaheri, H. Nishikawa, First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems, NASA Technical Reports, NASA/TM-2014-218175 (2014)
- J. Lou, L. Li, H. Luo, H. Nishikawa, Reconstructed discontinuous Galerkin methods for linear advection-diffusion equations based on first-order hyperbolic system, Journal of Computational Physics 369 (2018) 103-124. https://doi.org/10.1016/j.jcp.2018.04.058
- L. Li, J. Lou, H. Luo, H. Nishikawa, High-order hyperbolic Navier-Stokes reconstructed discontinuous Galerkin method, Scitech 2019 Forum, San Diego, California, USA, 2019, 2019-1150
- L. Li, J. Lou, H. Luo, H. Nishikawa, High-order hyperbolic Navier-Stokes reconstructed discontinuous Galerkin method for unsteady flows, AIAA Aviation 2019 Forum, Dallas, Texas, USA, 2019, 2019-3060
- D.A. Kopriva, Implementing spectral methods for partial differential equations: Algorithms for scientists and engineers, Springer Science & Business Media, 2009.
- D.A. Kopriva, J.H. Kolias, A conservative staggered-grid Chebyshev multidomain method for compressible flows, Journal of Computational Physics 125 (1) (1996) 244-261. https://doi.org/10.1006/jcph.1996.0091
- D.A. Kopriva, A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method, Journal of Computational Physics 128 (2) (1996) 475-488. https://doi.org/10.1006/jcph.1996.0225
- D.A. Kopriva, A staggered-grid multidomain spectral method for the compressible Navier-Stokes equations, Journal of Computational Physics 143 (1) (1998) 125-158. https://doi.org/10.1006/jcph.1998.5956
- D.A. Kopriva, G.J. Gassner, On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods, SIAM Journal on Scientific Computation. 44 (2) (2010) 136-155.
- D.A. Kopriva, G.J. Gassner, An energy stable discontinuous Galerkin spectral element discretization for variable coefficient advection problems, SIAM Journal on Scientific Computation. 36 (4) (2014) A2076-A2099. https://doi.org/10.1137/130928650
- G.J. Gassner, A.R. Winters, D.A. Kopriva, Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J. Comput. Phys. 327 (2016) 39-66. https://doi.org/10.1016/j.jcp.2016.09.013
- F. Hindenlang, G.J. Gassner, C. Altmann, A. Beck, M. Staudenmaier, C.D. Munz, Explicit discontinuous Galerkin methods for unsteady problems, Comput. Fluids 61 (2012) 86-93. https://doi.org/10.1016/j.compfluid.2012.03.006
- H. Luo, J. Baum, R. Lohner, J. Cabello, Implicit schemes and boundary conditions for compressible flows on unstructured grids, 32nd Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 1994, 1994-816.