DOI QR코드

DOI QR Code

Facile Synthesis of g-C3N4 Modified Bi2MoO6 Nanocomposite with Improved Photoelectronic Behaviors

  • Zhu, Lei (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Tang, Jia-Yao (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Fan, Jia-Yi (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Sun, Chen (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Meng, Ze-Da (Suzhou University of Science and Technology, School of Chemistry and Life Sciences) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • 투고 : 2021.09.14
  • 심사 : 2021.10.13
  • 발행 : 2021.11.27

초록

Herein, a series of g-C3N4 modified Bi2MoO6 nanocomposites using Bi2MoO6 and melamine as original materials are fabricated via sintering process. For presynthesis of Bi2MoO6 an ultrasonic-assisted hydrothermal technique is researched. The structure and composition of the nanocomposites are characterized by Raman spectroscopy, X-ray diffraction (XRD), and high-resolution field emission scanning electron microscopy (SEM). The improved photoelectrochemical properties are studied by photocurrent density, EIS, and amperometric i-t curve analysis. It is found that the structure of Bi2MoO6 nanoparticles remains intact, with good dispersion status. The as-prepared g-C3N4/Bi2MoO6 nanocomposites (BMC 5-9) are selected and investigated by SEM analysis, which inhibits special morphology consisting of Bi2MoO6 nanoparticles and some g-C3N4 nanosheets. The introduction of small sized g-C3N4 nanosheets in sample BMC 9 is effective to improve the charge separation and transfer efficiency, resulting in enhancing of the photoelectric behavior of Bi2MoO6. The improved photoelectronic behavior of g-C3N4/Bi2MoO6 may be attributed to enhanced charge separation efficiency, photocurrent stability, and fast electron transport pathways for some energy applications.

키워드

참고문헌

  1. F. Wang, D. Banerjee, Y. S. Liu, X. Y. Chen and X. G. Liu, Analyst, 135, 1839 (2010). https://doi.org/10.1039/c0an00144a
  2. B. B. Zhang, L. Wang, Y. J. Zhang, Y. Ding and Y. P. Bi, Angew. Chem. Int. Ed., 57, 2248 (2018). https://doi.org/10.1002/anie.201712499
  3. C. Burda, X. B. Chen, R. Narayanan and M. A. El-Sayed, Chem. Rev., 105, 1025 (2005). https://doi.org/10.1021/cr030063a
  4. K. Besteman, J. O. Lee, F. Wiertz, H. A. Heering and C. Dekker, Nano Lett., 3, 727 (2003). https://doi.org/10.1021/nl034139u
  5. F. Z. Cong, W. Hong, X. R. Tian and H. X. Xu, Front. Phys., 7, 521 (2012). https://doi.org/10.1007/s11467-012-0255-y
  6. F. E. Osterloh, Chem. Soc. Rev., 42, 2294 (2013). https://doi.org/10.1039/C2CS35266D
  7. T. Yao, X. An, H. Han, J. Q. Chen and C. Li, Adv. Energy Mater., 8, 1800210 (2018). https://doi.org/10.1002/aenm.201800210
  8. S. Zhao, Z. Dai, W. Guo, F. Chen, Y. Liu and R. Chen, Appl. Catal., B, 244, 206 (2019). https://doi.org/10.1016/j.apcatb.2018.11.047
  9. G. H. Tian, Y. J. Chen, R. T. Zhai, J. Zhou, W. Zhou, R. H. Wang, K. Pan, C. G. Tian and H. G. Fu, J. Mater. Chem. A, 1, 6961 (2013). https://doi.org/10.1039/c3ta10511c
  10. J. Tian, P. Hao, N. Wei, H. Z. Cui and H. Liu, ACS Catal., 5, 4530 (2015). https://doi.org/10.1021/acscatal.5b00560
  11. D. K. Zhong, S. Choi, D. R. Gamelin, J. Am. Chem. Soc., 133, 18370 (2011). https://doi.org/10.1021/ja207348x
  12. J. E. Rettie, H. C. Lee, L. G. Marshall, J. F. Lin, C. Capan, J. Lindemuth, J. S. McCloy, J. Zhou, A. J. Bard and C. B. Mullins, J. Am. Chem. Soc., 135, 11389 (2013). https://doi.org/10.1021/ja405550k
  13. F. Zhou, R. Shi and Y. F. Zhu, J. Mol. Catal. A: Chem., 340, 77 (2011). https://doi.org/10.1016/j.molcata.2011.03.012
  14. M. Y. Zhang, C. L. Shao, J. B. Mu, X. M. Huang, Z. Y. Zhang, Z. C. Guo, P. Zhang and Y. C. Liu, J. Mater. Chem., 22, 577 (2012). https://doi.org/10.1039/c1jm13470a
  15. K. R. Lai, W. Wei, Y. T. Zhu, M. Guo, Y. Dai and B. B. Huang, J. Solid State Chem., 187, 103 (2012). https://doi.org/10.1016/j.jssc.2012.01.004
  16. Y. Wang, X. Wang and M. Antonietti, Angew. Chem. Int. Ed., 51, 68 (2012). https://doi.org/10.1002/anie.201101182
  17. G. Dong, Y. Zhang, Q. Pan and J. Qiu, J. Photochem. Photobio., C, 20, 33 (2014). https://doi.org/10.1016/j.jphotochemrev.2014.04.002
  18. X. H. Li and M. Antonietti, Chem. Soc. Rev., 42, 6593 (2013). https://doi.org/10.1039/c3cs60067j
  19. H. Li, J. Liu, W. Hou, N. Du, R. Zhang and X. Tao, Appl. Catal., B, 160, 89 (2014). https://doi.org/10.1016/j.apcatb.2014.05.019
  20. Y. Z. Zhen, C. M. Yang, F. Fu, H. D. Shen, W. W. Xue, C. R. Gu, J. H. Feng, Y. C. Zhang and Y. C. Liang, Phys. Chem. Chem. Phys., 22, 26278 (2020). https://doi.org/10.1039/d0cp02199g
  21. Y. Ma, Z. H. Wang, Y. L. Jia, L. N. Wang, M. Yang, Y. X. Qi and Y. P. Bi, Carbon, 114, 591 (2017). https://doi.org/10.1016/j.carbon.2016.12.043
  22. P. F. Wang, Y. H. Ao, C. Wang, J. Hou, J. Qian, Carbon, 50, 5256 (2012). https://doi.org/10.1016/j.carbon.2012.06.063
  23. G. Zhang, J. Zhang, M. Zhang and X. Wang, J. Mater. Chem., 22, 8083 (2012). https://doi.org/10.1039/c2jm00097k
  24. T. Yan, Q. Yan, X. D. Wang, H. Y. Liu, M. M. Li, S. X. Lu, W. G. Xu and M. Sun, Dalton Trans., 44, 1601 (2015). https://doi.org/10.1039/c4dt02127d
  25. Y. Li, J. Wang, X. Tian, L. Ma, C. Dai, C. Yang and Z. Zhou, Nanoscale, 8, 1676 (2016). https://doi.org/10.1039/C5NR07370G
  26. H. E. Ali and Y. Khairy, Optik, 178, 90 (2019). https://doi.org/10.1016/j.ijleo.2018.10.049
  27. X. Y. Zhang, M. Y. Li, L. M. He, D. D. Tian, L. J. Zhang, J. H. Zhang and M. Liu, J. Alloys Compd., 864, 157905 (2021). https://doi.org/10.1016/j.jallcom.2020.157905
  28. J. Zhao, J. H. Yan, H. J. Jia, S. W. Zhong, X. Y. Zhang and L. Xu, J. Mol. Catal. A: Chem., 424, 162 (2016). https://doi.org/10.1016/j.molcata.2016.08.025
  29. K. Fu, Y. H. Pan, C. Ding, J. Shi and H. P. Deng J. Photochem. Photobiol., A, 412, 113235 (2021). https://doi.org/10.1016/j.jphotochem.2021.113235
  30. M. Fu, J. M. Pi, F. Dong, Q. Y. Duan and H. Guo, Int. J. Photoenergy, 2013, 158496 (2013).
  31. L. Zhang, T. Xu, X. Zhao and Y. Zhu, Appl. Catal., B, 98, 138 (2010). https://doi.org/10.1016/j.apcatb.2010.05.022
  32. M. MacZka, P. T. C. Freire, C. Luz-Lima, W. Paraguassu, J. Hanuza and J. M. Filho, J. Phys.: Condens. Matter, 22, 015901 (2010). https://doi.org/10.1088/0953-8984/22/1/015901
  33. H. Li, C. Liu, K. Li and H. Wang, J. Mater. Sci., 43, 7026 (2008). https://doi.org/10.1007/s10853-008-3034-y