DOI QR코드

DOI QR Code

Development of a Portable and Disposable pH Sensor Based on Titanium Wire with High Electrochemical Sensing Performance

우수한 전기화학적 센싱 성능을 지닌 티타늄 와이어 기반의 휴대 및 일회용 pH 센서 개발

  • Yoon, Eun Seop (Department of Chemical Engineering, Kangwon National University) ;
  • Yoon, Jo Hee (Department of Chemical Engineering, Kangwon National University) ;
  • Son, Seon Gyu (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Seo Jin (Department of Chemical Engineering, Kangwon National University) ;
  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • 윤은섭 (강원대학교(삼척캠퍼스) 화학공학과) ;
  • 윤조희 (강원대학교(삼척캠퍼스) 화학공학과) ;
  • 손선규 (강원대학교(삼척캠퍼스) 화학공학과) ;
  • 김서진 (강원대학교(삼척캠퍼스) 화학공학과) ;
  • 최봉길 (강원대학교(삼척캠퍼스) 화학공학과)
  • Received : 2021.10.29
  • Accepted : 2021.11.22
  • Published : 2021.12.10

Abstract

A portable and disposable pH sensor based on Ti wire was successfully developed for monitoring hydronium ion concentrations. A sensing electrode was prepared by electrochemically depositing iridium oxide onto a Ti wire, while a reference electrode was fabricated by coating Ag/AgCl ink on a Ti wire. Combining the two electrodes in the pH sensor enabled the collection of open circuit potential signals when the sensor was immersed in solutions of various pH values. The pH sensor exhibited excellent electrochemical sensing performance in terms of sensitivity, response time, repeatability, selectivity, and stability. To demonstrate point-of-measurement applications, the pH sensor was integrated with a wireless electronic module that could communicate with a mobile application. The portable pH sensor accurately measured pH changes in real samples. The results obtained were consistent with those of using a commercial pH meter.

본 연구에서는 하이드로늄 이온 농도를 모니터링하기 위한 티타늄(Ti) 와이어를 기반으로 하는 휴대용 일회용 pH 센서를 성공적으로 개발하였다. 센싱 전극은 Ti 와이어에 이리듐 산화물을 전기화학적으로 증착하여 제조하였고, 기준 전극으로 Ti 와이어에 Ag/AgCl 잉크를 코팅하였다. pH 센서에 두 개의 전극을 결합한 후 pH 센서를 다양한 pH 용액에 담그면 개방 회로 전위 신호를 수집할 수 있다. 상기 제조된 pH 센서는 감도, 응답 시간, 반복성, 선택도 및 안정성 측면에서 우수한 전기화학적 감지 성능을 보여 주었다. 현장 검사 응용을 시연하기 위해서 pH 센서를 모바일 애플리케이션과 통신할 수 있는 무선 전자 모듈과 통합하였다. 이 휴대용 pH 센서는 실제 샘플의 pH 변화를 정확하게 측정했으며 결과는 상용 pH 측정기의 데이터와 일치하였다.

Keywords

Acknowledgement

This research was supported by University innovation support project through the National Research Foundation of Korea funded by the Ministry of Education. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (No. 2021R1A2C1009926).

References

  1. P. Hinsinger, C. Plassard, C. Tang, and B. Jaillard, Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review, Plat Soil, 248, 43-59 (2003). https://doi.org/10.1023/A:1022371130939
  2. Z. Zhou, J. Li, D. Pan, H. Wei, C. Wang, F. Pan, J. Xia, and S. Ma, pH electrodes based on iridium oxide films for marine monitoring, Trends Environ. Anal. Chem., 25, e00083 (2020). https://doi.org/10.1016/j.teac.2020.e00083
  3. Y. H. Roos, Water and pathogenic Viruses Inactivation-Food Engineering Perspectives, Food Eng. Rev., 12, 251-267 (2020). https://doi.org/10.1007/s12393-020-09234-z
  4. M. Y. Schneider, V. Furrer, E. Sprenger, J. P. Carbajal, K. Villez, and M. Maurer, Benchmarking Soft Sensors for Remote Monitoring of On-Site Wastewater Treatment Plants, Environ. Sci. Technol., 54, 10840-10849 (2020). https://doi.org/10.1021/acs.est.9b07760
  5. A. S. Varela, The importance of pH in controlling the selectivity of the electrochemical CO2 reduction, Curr. Opin. Green Sustainable Chem., 26, 100371 (2020). https://doi.org/10.1016/j.cogsc.2020.100371
  6. Y. Yamaguchi, R. Aono, E. Hayashi, K. Kamata, and M. Hara, Template-Free Synthesis of Mesoporous β-MnO2 Nanoparticles: Structure, Formation Mechanism, and Catalytic Properties, ACS Appl. Mater. Interfaces, 12, 36004-36013 (2020). https://doi.org/10.1021/acsami.0c08043
  7. Y. Song, J. Min, Y. Yu, H. Wang, Y. Yang, H. Zhang, and W. Gao, Wireless battery-free wearable sweat sensor powered by human motion, Sci. Adv., 6, eaay9842 (2020). https://doi.org/10.1126/sciadv.aay9842
  8. A. J. Bandodkar, P. Gutruf, J. Choi, K. Lee, Y. Sekine, J. T. Reeder, W. J. Jeang, A. J. Arayosi, S. P. Lee, J. B. Model, R. Ghaffari, C.-J. Su, J. P. Leshock, T. Ray, A. Verrillo, K. Thomas, V. Krishnamurthi, S. Han, J. Kim, S. Krishnan, T. Hang, and J. A. Rogers, Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat, Sci. Adv., 5, eaav3294 (2019). https://doi.org/10.1126/sciadv.aav3294
  9. J. H. Yoon, S.-M. Kim, H. J. Park, Y. K. Kim, D. X. Oh, H.-W. Cho, K. G. Lee, S. Y. Hwang, J. Park, and B. G. Choi, Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids, ACS Appl. Mater. Interfaces, 11, 46165 (2019). https://doi.org/10.1021/acsami.9b16829
  10. M. T. Ghoneim, A. Nguyen, N. Dereje, J. Huang, G. C. Moore, P.J. Murzynowski, and C. Dagdeviren, Recent Progress in Electrochemical pH-Sensing Materials and Configurations for Biomedical Applications, Chem. Rev., 119, 5248-5297 (2019). https://doi.org/10.1021/acs.chemrev.8b00655
  11. H. J. Park, J. H. Yoon, K. G. Lee, and B. G. Choi, Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays, Nano Converg., 6, 9 (2019). https://doi.org/10.1186/s40580-019-0179-0
  12. E. Tanumihardja, W. Olthuis, and A. van den Berg, Ruthenium Oxide Nanorods as Potentiometric pH Sensor for Organs-On-Chip Purposes, Sensors, 18, No. 2901 (2018).
  13. L. Telli, B. Brahimi, and A. Hammouche, Study of a pH sensor with MnO2 and montmorillonite-based solid-state internal reference, Solid State Ion., 128, 255-259 (2000). https://doi.org/10.1016/S0167-2738(00)00282-4
  14. L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak, and R. P. Socha, Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements, Sens. Actuators B Chem., 204, 57-67 (2014). https://doi.org/10.1016/j.snb.2014.07.067
  15. M. Wang, S. Yao, and M. Madou, A long-term stable iridium oxide pH electrode, Sens. Actuatator. B Chem., 81, 313-315 (2002). https://doi.org/10.1016/S0925-4005(01)00972-8
  16. K. G. Kreider, M. J. Tarlov, and J. P. Cline, Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides, Sens. Actuators B Chem., 28, 167-172 (1995). https://doi.org/10.1016/0925-4005(95)01655-4
  17. J. H. Yoon, S. B. Hong, S.-O. Yun, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, High performance flexible pH sensor based on polyaniline nanopillar array electrode, J. Colloid Interface Sci., 490, 53-58 (2017). https://doi.org/10.1016/j.jcis.2016.11.033
  18. B. Lakard, O. Segut, S. Lakard, G. Herlem, and T. Gharbi, Potentiometric miniaturized pH sensors based on polypyrrole films, Sens. Actuators B Chem., 122, 101-108 (2007). https://doi.org/10.1016/j.snb.2006.04.112
  19. W.-D. Huang, H. Cao, S. Deb, M. Chiao, and J.C. Chiao, A flexible pH sensor based on the iridium oxide sensing film, Sens. Actuator A Phys., 169, 1-11 (2011). https://doi.org/10.1016/j.sna.2011.05.016
  20. H. Cao, V. Landge, U. Tata, Y.-S. Seo, S. Rao, S.-J. Tang, H. F. Tibbals, S. Spechler, and J.-C. Chiao, An Implantable, Batteryless, and Wireless Capsule With Integrated Impedance and pH Sensors for Gastroesophageal Reflux Monitoring, IEEE Trans. Biomed. Eng., 59, 3131-3139 (2012). https://doi.org/10.1109/TBME.2012.2214773
  21. H.-J. Chung, M. S. Sulkin, J.-S. Kim, C. Goudeseune, H.-Y. Chao, J. W. Song, S. Y. Yang, Y.-Y. Hsu, R. Ghaffari, I. R. Efimov, and J. A. Rogers, Ultrathin, Stretchable, Multiplexing pH Sensor Arrays on Biomedical Devices With Demonstrations on Rabbit and Human Hearts Undergoing Ischemia, Adv. Healthc. Mater, 3, 59-68 (2014). https://doi.org/10.1002/adhm.201300124
  22. S. Anastasova, P. Kassanos, and G.-Z. Yang, Multi-parametric rigid and flexible, low-cost, disposable sensing platforms for biomedical applications, Biosens. Bioelectron., 102, 668-675 (2018). https://doi.org/10.1016/j.bios.2017.10.038
  23. S. Negi, R. Bhandari, L. Rieth, and F. Solzabacher, Effect of sputtering pressure on pulsed-DC sputtered iridium oxide films, Sens. Actuators B Chem., 137, 370-378 (2009). https://doi.org/10.1016/j.snb.2008.11.015
  24. W.-H. Choi and I. Papautsky, Fabrication of a needle-type pH sensor by selective electrodeposition, Meas. Sci. Technol., 22, 042001 (2011). https://doi.org/10.1088/0957-0233/22/4/042001
  25. M. Tabata, C. Ratanaporncharoen, A. Asano, Y. Kitasako, M. Ikeda, T. Goda, A. Matsumoto, J. Tagami, and Y. Miyahara, Miniaturized Ir/IrOx pH Sensor for Quantitative Diagnosis of Dental Caries, Procedia Eng., 168, 598-601 (2016). https://doi.org/10.1016/j.proeng.2016.11.223
  26. A. McLister, C. Casimero, A. McConville, C. M. Taylor, C. L. Lawrence, R. B. Smith, A. Mathur, and J. Davis, Design of a smart sensor mesh for the measurement of pH in ostomy applications, J. Mater. Sci., 54, 10705-10714 (2019). https://doi.org/10.1007/s10853-019-03642-1
  27. R. P. Buck and E. Lindner, Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994), Pure Appl. Chem., 73, 88A-97A (2001).
  28. H. J. Park, J.-M. Jeong, S. G. Son, S. J. Kim, M. Lee, H. J. Kim, J. Jeong, S. Y. Hwang, J. Park, Y. Eom, and B. G. Choi, Fluid-Dynamics-Processed Highly Stretchable, Conductive, and Printable Graphene Inks for Real-Time Monitoring Sweat during Stretching Exercise, Adv. Funct. Mater., 31, 201059 (2021).
  29. D. S. Kim, J.-M. Jeong, H. J. Park, Y. K. Kim, K. G. Lee, and B. G. Choi, Highly Concentrated, Conductive, Defect-free Graphene Ink for Screen-Printed Sensor Application, Nano-Micro Lett., 13, 87 (2021). https://doi.org/10.1007/s40820-021-00617-3
  30. J. M. Pingarron, J. Labuda, J. Barek, C. M. A. Brett, M. F. Camoes, M. Fojta, and D. B. Hibbert, Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure Appl. Chem., 92, 641-694 (2020). https://doi.org/10.1515/pac-2018-0109