Browse > Article
http://dx.doi.org/10.14478/ace.2021.1092

Development of a Portable and Disposable pH Sensor Based on Titanium Wire with High Electrochemical Sensing Performance  

Yoon, Eun Seop (Department of Chemical Engineering, Kangwon National University)
Yoon, Jo Hee (Department of Chemical Engineering, Kangwon National University)
Son, Seon Gyu (Department of Chemical Engineering, Kangwon National University)
Kim, Seo Jin (Department of Chemical Engineering, Kangwon National University)
Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.32, no.6, 2021 , pp. 700-705 More about this Journal
Abstract
A portable and disposable pH sensor based on Ti wire was successfully developed for monitoring hydronium ion concentrations. A sensing electrode was prepared by electrochemically depositing iridium oxide onto a Ti wire, while a reference electrode was fabricated by coating Ag/AgCl ink on a Ti wire. Combining the two electrodes in the pH sensor enabled the collection of open circuit potential signals when the sensor was immersed in solutions of various pH values. The pH sensor exhibited excellent electrochemical sensing performance in terms of sensitivity, response time, repeatability, selectivity, and stability. To demonstrate point-of-measurement applications, the pH sensor was integrated with a wireless electronic module that could communicate with a mobile application. The portable pH sensor accurately measured pH changes in real samples. The results obtained were consistent with those of using a commercial pH meter.
Keywords
pH sensor; Electrochemistry; Titanium; Electromotive force; Iridium oxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Tabata, C. Ratanaporncharoen, A. Asano, Y. Kitasako, M. Ikeda, T. Goda, A. Matsumoto, J. Tagami, and Y. Miyahara, Miniaturized Ir/IrOx pH Sensor for Quantitative Diagnosis of Dental Caries, Procedia Eng., 168, 598-601 (2016).   DOI
2 W.-D. Huang, H. Cao, S. Deb, M. Chiao, and J.C. Chiao, A flexible pH sensor based on the iridium oxide sensing film, Sens. Actuator A Phys., 169, 1-11 (2011).   DOI
3 S. Anastasova, P. Kassanos, and G.-Z. Yang, Multi-parametric rigid and flexible, low-cost, disposable sensing platforms for biomedical applications, Biosens. Bioelectron., 102, 668-675 (2018).   DOI
4 H. J. Park, J.-M. Jeong, S. G. Son, S. J. Kim, M. Lee, H. J. Kim, J. Jeong, S. Y. Hwang, J. Park, Y. Eom, and B. G. Choi, Fluid-Dynamics-Processed Highly Stretchable, Conductive, and Printable Graphene Inks for Real-Time Monitoring Sweat during Stretching Exercise, Adv. Funct. Mater., 31, 201059 (2021).
5 W.-H. Choi and I. Papautsky, Fabrication of a needle-type pH sensor by selective electrodeposition, Meas. Sci. Technol., 22, 042001 (2011).   DOI
6 H. Cao, V. Landge, U. Tata, Y.-S. Seo, S. Rao, S.-J. Tang, H. F. Tibbals, S. Spechler, and J.-C. Chiao, An Implantable, Batteryless, and Wireless Capsule With Integrated Impedance and pH Sensors for Gastroesophageal Reflux Monitoring, IEEE Trans. Biomed. Eng., 59, 3131-3139 (2012).   DOI
7 H.-J. Chung, M. S. Sulkin, J.-S. Kim, C. Goudeseune, H.-Y. Chao, J. W. Song, S. Y. Yang, Y.-Y. Hsu, R. Ghaffari, I. R. Efimov, and J. A. Rogers, Ultrathin, Stretchable, Multiplexing pH Sensor Arrays on Biomedical Devices With Demonstrations on Rabbit and Human Hearts Undergoing Ischemia, Adv. Healthc. Mater, 3, 59-68 (2014).   DOI
8 S. Negi, R. Bhandari, L. Rieth, and F. Solzabacher, Effect of sputtering pressure on pulsed-DC sputtered iridium oxide films, Sens. Actuators B Chem., 137, 370-378 (2009).   DOI
9 A. McLister, C. Casimero, A. McConville, C. M. Taylor, C. L. Lawrence, R. B. Smith, A. Mathur, and J. Davis, Design of a smart sensor mesh for the measurement of pH in ostomy applications, J. Mater. Sci., 54, 10705-10714 (2019).   DOI
10 M. Y. Schneider, V. Furrer, E. Sprenger, J. P. Carbajal, K. Villez, and M. Maurer, Benchmarking Soft Sensors for Remote Monitoring of On-Site Wastewater Treatment Plants, Environ. Sci. Technol., 54, 10840-10849 (2020).   DOI
11 J. H. Yoon, S.-M. Kim, H. J. Park, Y. K. Kim, D. X. Oh, H.-W. Cho, K. G. Lee, S. Y. Hwang, J. Park, and B. G. Choi, Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids, ACS Appl. Mater. Interfaces, 11, 46165 (2019).   DOI
12 D. S. Kim, J.-M. Jeong, H. J. Park, Y. K. Kim, K. G. Lee, and B. G. Choi, Highly Concentrated, Conductive, Defect-free Graphene Ink for Screen-Printed Sensor Application, Nano-Micro Lett., 13, 87 (2021).   DOI
13 R. P. Buck and E. Lindner, Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994), Pure Appl. Chem., 73, 88A-97A (2001).
14 A. S. Varela, The importance of pH in controlling the selectivity of the electrochemical CO2 reduction, Curr. Opin. Green Sustainable Chem., 26, 100371 (2020).   DOI
15 Y. Song, J. Min, Y. Yu, H. Wang, Y. Yang, H. Zhang, and W. Gao, Wireless battery-free wearable sweat sensor powered by human motion, Sci. Adv., 6, eaay9842 (2020).   DOI
16 A. J. Bandodkar, P. Gutruf, J. Choi, K. Lee, Y. Sekine, J. T. Reeder, W. J. Jeang, A. J. Arayosi, S. P. Lee, J. B. Model, R. Ghaffari, C.-J. Su, J. P. Leshock, T. Ray, A. Verrillo, K. Thomas, V. Krishnamurthi, S. Han, J. Kim, S. Krishnan, T. Hang, and J. A. Rogers, Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat, Sci. Adv., 5, eaav3294 (2019).   DOI
17 M. T. Ghoneim, A. Nguyen, N. Dereje, J. Huang, G. C. Moore, P.J. Murzynowski, and C. Dagdeviren, Recent Progress in Electrochemical pH-Sensing Materials and Configurations for Biomedical Applications, Chem. Rev., 119, 5248-5297 (2019).   DOI
18 Z. Zhou, J. Li, D. Pan, H. Wei, C. Wang, F. Pan, J. Xia, and S. Ma, pH electrodes based on iridium oxide films for marine monitoring, Trends Environ. Anal. Chem., 25, e00083 (2020).   DOI
19 Y. H. Roos, Water and pathogenic Viruses Inactivation-Food Engineering Perspectives, Food Eng. Rev., 12, 251-267 (2020).   DOI
20 Y. Yamaguchi, R. Aono, E. Hayashi, K. Kamata, and M. Hara, Template-Free Synthesis of Mesoporous β-MnO2 Nanoparticles: Structure, Formation Mechanism, and Catalytic Properties, ACS Appl. Mater. Interfaces, 12, 36004-36013 (2020).   DOI
21 E. Tanumihardja, W. Olthuis, and A. van den Berg, Ruthenium Oxide Nanorods as Potentiometric pH Sensor for Organs-On-Chip Purposes, Sensors, 18, No. 2901 (2018).
22 B. Lakard, O. Segut, S. Lakard, G. Herlem, and T. Gharbi, Potentiometric miniaturized pH sensors based on polypyrrole films, Sens. Actuators B Chem., 122, 101-108 (2007).   DOI
23 H. J. Park, J. H. Yoon, K. G. Lee, and B. G. Choi, Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays, Nano Converg., 6, 9 (2019).   DOI
24 M. Wang, S. Yao, and M. Madou, A long-term stable iridium oxide pH electrode, Sens. Actuatator. B Chem., 81, 313-315 (2002).   DOI
25 J. H. Yoon, S. B. Hong, S.-O. Yun, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, High performance flexible pH sensor based on polyaniline nanopillar array electrode, J. Colloid Interface Sci., 490, 53-58 (2017).   DOI
26 K. G. Kreider, M. J. Tarlov, and J. P. Cline, Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides, Sens. Actuators B Chem., 28, 167-172 (1995).   DOI
27 J. M. Pingarron, J. Labuda, J. Barek, C. M. A. Brett, M. F. Camoes, M. Fojta, and D. B. Hibbert, Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure Appl. Chem., 92, 641-694 (2020).   DOI
28 L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak, and R. P. Socha, Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements, Sens. Actuators B Chem., 204, 57-67 (2014).   DOI
29 P. Hinsinger, C. Plassard, C. Tang, and B. Jaillard, Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review, Plat Soil, 248, 43-59 (2003).   DOI
30 L. Telli, B. Brahimi, and A. Hammouche, Study of a pH sensor with MnO2 and montmorillonite-based solid-state internal reference, Solid State Ion., 128, 255-259 (2000).   DOI