DOI QR코드

DOI QR Code

Exploring Cognitive Achievement Characteristics by Group of Achievement Levels in the PISA 2018 Science Domain and Education for Cultivating Epistemic Knowledge in the National Curriculum

PISA 2015와 비교한 PISA 2018 과학 영역의 성취수준별 인지적 성취 특성과 교육과정 상 인식론적 지식 함양을 위한 교육 탐색

  • Received : 2021.08.23
  • Accepted : 2202.11.18
  • Published : 2021.10.31

Abstract

The purpose of this study is to explore the cognitive achievement characteristics by group of achievement levels in the PISA 2018 science domain compared to the results of the PISA 2015, and to compare and analyze the 'epistemic' knowledge in the revised curriculum 2009 and in the revised curriculum 2007. The average correctness rates in PISA 2015 and PISA 2018 were analyzed by sub category of the evaluation frame in the PISA scientific domain. In the competencies domain, especially, the average correct answer rates of 'evaluating and designing scientific inquiry' were the lowest in medium and lower groups, but the rates rose in all achievement groups compared to PISA 2015, which is encouraging. Although the answer rates were low for both 'living system' knowledge and 'epistemic' knowledge in the knowledge domain, the average answer rates of the upper and middle groups increased in 'epistemic' knowledge compared to PISA 2015. The changes in the curriculum experienced by students participating in PISA were analyzed in relation to the 'evaluating and designing scientific inquiry' competency and 'epistemic' knowledge, which increased in average correct answer rates. In terms of understanding science, the "What is science?" unit that explicitly presents epistemic knowledge, and nature of model in inquiry activities, were explicitly presented in the revised curriculum 2009. In terms of understanding the process of justifying scientific knowledge, the number of inquiry activities increased, scientific explanations based on experimental results strengthened, and the "Science and Human Civilization" unit was introduced to help students to understand STS while simultaneously conducting arguments. These findings confirm the educational performance of groups by achievement level in the PISA 2018 scientific domain and suggest that the direction of education relates to epistemic knowledge in Korea's Science curriculum.

본 연구의 목적은 PISA 2015 결과와 비교하여 PISA 2018 과학 영역에서 성취수준 집단별로 과학적 소양 성취 특성을 알아보고, PISA 2018에서 PISA 2015보다 정답률이 특히 상승한 '인식론적' 지식에 대해 PISA 참여 학생들이 경험한 교육과정을 중심으로 비교 분석하는 것이다. PISA 2015와 PISA 2018 평균 정답률을 PISA 과학 영역 평가틀 차원별 하위영역별로 분석하였다. 특히, '역량' 차원에서 중집단과 하집단에서 '과학 탐구의 평가 및 설계' 정답률이 가장 낮았지만, PISA 2015과 비교하여 모든 성취집단에서 정답률이 상승하였다는 점에서 고무적이다. '지식' 차원에서 '생물계' 지식과 '인식론적' 지식에서 정답률이 낮았지만, PISA 2015와 비교하면 '인식론적' 지식에서 상집단과 중집단의 정답률이 상승하였다. PISA 2015에 비해 PISA 2018에서 정답률이 상승한 '인식론적' 지식과 관련하여 PISA에 참여한 학생들이 경험한 교육과정의 변화를 살펴보았다. 과학에 대한 이해 측면에서 2009 개정 교육과정에서는 '과학이란?' 단원과 과학 탐구 활동에서 모형에 대한 이해를 향상시킬 수 있도록 하였다. 과학 지식을 정당화하는 과정에 대한 이해 측면에서 2009 개정 교육 과정에서는 탐구 활동의 수는 증가하고 실험 결과에 기반한 과학적 설명을 강화하였으며 '과학과 인류 문명' 단원을 도입하여 학생들이 STS를 이해하는 것과 동시에 논변활동을 할 수 있도록 하였다. 본 연구를 통해 PISA 2015와 비교한 PISA 2018의 성취수준별 인지적 성취 결과를 알아보았고 우리나라의 과학과 교육과정 개정이 탐구 수업을 통한 인식론적 지식 함양 교육 측면에서 긍정적인 방향으로 나타났다는 것을 확인하였다.

Keywords

References

  1. Abd-El-Khalick, F., BouJaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., Niaz, M., Treagust, D., & Tuan, H. L. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397-419. https://doi.org/10.1002/sce.10118
  2. American Association for the Advancement of Science [AAAS] (1993). Bechmarks for science literacy. New York: Oxford University Press.
  3. Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13(1), 1-12. https://doi.org/10.1023/A:1015171124982
  4. Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Science Education, 95(4), 639-669. https://doi.org/10.1002/sce.20449
  5. Berland, L. K., & Reiser, B. J. (2011). Classroom communities' adaptations of the practice of scientific argumentation. Science Education, 95(2), 191-216. https://doi.org/10.1002/sce.20420
  6. Brown, B., Reveles, J. M., & Kelly, G. J. (2005). Scientific literacy and discursive identity: A theoretical framework for understanding science learning. Science Education, 89(5), 779-802. https://doi.org/10.1002/sce.20069
  7. Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. Portsmouth, NH: Heinemann.
  8. Cho, S., Ku, N. W., Kim, H., Lee, S., & Lee, I. (2018). OECD programme for international students assessment: Implementation report of PISA 2018. Korea Institute for Curriculum and Evaluation. ORM 2018-87.
  9. Cho, S., Ku, N. W., Kim, H., Lee, S., & Lee, I. (2019). OECD Programme for International Students Assessment: An analysis of PISA 2018 Result. Korea Institute for Curriculum and Evaluation. RRE 2019-11.
  10. Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041-1053. https://doi.org/10.1080/095006900416901
  11. Duschl, R. A. (2008). Science education in 3 part harmony: Balancing conceptual, epistemic and social goals. Review of Research in Education, 32(1), 268-291. https://doi.org/10.3102/0091732X07309371
  12. Duschl, R. A., & Grandy, R. (2013). Two views about explicitly teaching nature of science. Science & Education, 22(9), 2109-2139. https://doi.org/10.1007/s11191-012-9539-4
  13. Giere, R. N. (1999) Using models to represent reality. In L. Magnani, N. J. Nersessian, P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 41-57). Dordrecht: Kluwer Academic.
  14. Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 3-17). Dordrecht, The Netherlands: Kluwer Academic.
  15. Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026. https://doi.org/10.1080/095006900416884
  16. Kelly, G. J. (2008). Inquiry, activity and epistemic practice. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry
  17. National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies.
  18. Kim, H. (2018). Discussion on the characteristics and framework for PISA science assessment. School Science Journal, 12(4), 389-398. https://doi.org/10.15737/SSJ.12.4.201812.389
  19. Kim, J., Min, B. M., Lee, Y., Son, Y. A., Kim, D. R., & Kim, T. H. (2013). Comparative analysis of the nature of science reflected on the elementary school science textbooks of Korea, Japan, and the U.S. Journal of Research in Curriculum & Instruction, 17(2): 619-644. https://doi.org/10.24231/rici.2013.17.2.619
  20. Kim, M., & Kim, H. B. (2009). Analysis of the types of scientific models in the life domain of science textbooks. Journal of the Korean Association for Science Education, 29(4), 407-424.
  21. Kim, S. & Shin, D. (2019). Exploring the possibilities of character education in various interaction-based mentor program: Focusing on "Becoming a science teacher" activity. Journal of the Korean Association for Science Education, 39(1), 13-33. https://doi.org/10.14697/JKASE.2019.39.1.13
  22. Ku, J., Kim, S., Rim, H., Park, H., & Han, J. A. (2015). Programme for international student assessment(PISA 2015) main survey technical report. Korea Institute for Curriculum and Evaluation. RRE 2015-6-2.
  23. Lee, S., Cho, S., Koo, N., Lee, I., & Lee, S. (2020). An Analysis of the Achievement Characteristics of Korean Students in the Results of PISA 2018: Focusing on the Characteristics of Each Achievement Level and Students with Academic Resilience. RRE 2020-7.
  24. Lee, Y. H. (2013). Nature of science (NOS) presentation in the introductory chapters of Korean high school life science I textbooks using a qualitative content analysis. Journal of Research in Curriculum & Instruction, 17(1), 173-197. https://doi.org/10.24231/RICI.2013.17.1.173
  25. Ministry of Education [MOE] (2015). Science curriculum. Notification No. 2015-74 [issue 9]. Sejong: Ministry of Education.
  26. Ministry of Education & Human Resources Development (2007). Science curriculum. Notification No. 2007-79 [issue 9]. Seoul: Ministry of the Ministry of Education & Human Resources Development.
  27. Ministry of Education, Science and Technology (2011). Science curriculum. Notification No. 2011-361 [issue 9]. Seoul: Ministry of Education, Science and Technology.
  28. Mun, G., Mun, J., Cho, M., Kim, S. Y., & Joseph Krajcik (2012). Development and application of 21st century scientific literacy evaluation framework on Korean high school science text books. Journal of the Korean Association for Science Education, 32(5), 789-804. https://doi.org/10.14697/JKASE.2012.32.5.789
  29. National Research Council (NRC). (2000). Inquiry and the national science education Standards. Washington, DC: National Academy Press.
  30. OECD (2019a). PISA 2018 Assessment and Analytical Framework. OECD Publishing.
  31. OECD (2019b). PISA 2018 Results: What students know and can do (Vol. I). OECD Publishing.
  32. Park, J. (2016). Discussions about the three aspects of scientific literacy: Focus on integrative understanding, settlement in curriculum, and civic education. Journal of the Korean Association for Science Education, 36(3), 413-422. https://doi.org/10.14697/JKASE.2016.36.3.0413
  33. Rim, H. (2013). The Trends and what's new in the OECD PISA and its items. Journal of Research in Curriculum & Instruction, 17(4), 971-990. https://doi.org/10.24231/rici.2013.17.4.971
  34. Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K. Abell, & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729-780). Mahwah, NJ: Lawrence Erlbaum Associates.
  35. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., Shwartz, Y.., Hug, B.., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  36. Stroupe, D. (2014). Examining classroom science practice communities: How teachers and students negotiate epistemic agency and learn science-as-practice. Science Education, 98(3), 487-516. https://doi.org/10.1002/sce.21112
  37. Yang, F. Y., Liu, S. Y., Hsu, C. Y., Chiou, G. L., Wu, H. K., Wu, Y. T., Chen, S., Liang, J. C., Tsai, M. J., Lee, S. W. Y., Lee, M. H., Lin, C. L., Chu, R. J., & Tsai, C. C. (2018). High-school students' epistemic knowledge of Science and its relation to learner factors in Science learning. Research in Science Education, 48(2), 325-344. https://doi.org/10.1007/s11165-016-9570-6
  38. Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis: Theory, research, and practice. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research in science education (Vol. 2, pp. 697-726). New York, NY: Routledge.