DOI QR코드

DOI QR Code

Neural-Cadherin Influences the Homing of Terminally Differentiated Memory CD8 T Cells to the Lymph Nodes and Bone Marrow

  • Received : 2021.05.22
  • Accepted : 2021.09.27
  • Published : 2021.11.30

Abstract

Memory T (TM) cells play an important role in the long-term defense against pathogen reinvasion. However, it is still unclear how these cells receive the crucial signals necessary for their longevity and homeostatic turnover. To understand how TM cells receive these signals, we infected mice with lymphocytic choriomeningitis virus (LCMV) and examined the expression sites of neural cadherin (N-cadherin) by immunofluorescence microscopy. We found that N-cadherin was expressed in the surroundings of the white pulps of the spleen and medulla of lymph nodes (LNs). Moreover, TM cells expressing high levels of killer cell lectin-like receptor G1 (KLRG1), a ligand of N-cadherin, were co-localized with N-cadherin+ cells in the spleen but not in LNs. We then blocked N-cadherin in vivo to investigate whether it regulates the formation or function of TM cells. The numbers of CD127hiCD62Lhi TM cells in the spleen of memory P14 chimeric mice declined when N-cadherin was blocked during the contraction phase, without functional impairment of these cells. In addition, when CD127loKLRG1hi TM cells were adoptively transferred into anti-N-cadherin-treated mice compared with control mice, the number of these cells was reduced in the bone marrow and LNs, without functional loss. Taken together, our results suggest that N-cadherin participates in the development of CD127hiCD62Lhi TM cells and homing of CD127loKLRG1hi TM cells to lymphoid organs.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2021R1A2C2004279 and NRF-2019R1A6A1A03031807). The authors are grateful to Yeaji Kim for her helpful comments and discussions.

References

  1. Adams, G.B. and Scadden, D.T. (2006). The hematopoietic stem cell in its place. Nat. Immunol. 7, 333-337. https://doi.org/10.1038/ni1331
  2. Ahlers, J.D. and Belyakov, I.M. (2010). Memories that last forever: strategies for optimizing vaccine T-cell memory. Blood 115, 1678-1689. https://doi.org/10.1182/blood-2009-06-227546
  3. Alimperti, S. and Andreadis, S.T. (2015). CDH2 and CDH11 act as regulators of stem cell fate decisions. Stem Cell Res. 14, 270-282. https://doi.org/10.1016/j.scr.2015.02.002
  4. Baeyens, A., Fang, V., Chen, C., and Schwab, S.R. (2015). Exit strategies: S1P signaling and T cell migration. Trends Immunol. 36, 778-787. https://doi.org/10.1016/j.it.2015.10.005
  5. Bevan, M.J. (2011). Memory T cells as an occupying force. Eur. J. Immunol. 41, 1192-1195. https://doi.org/10.1002/eji.201041377
  6. Bouchentouf, M., Forner, K.A., Cuerquis, J., Michaud, V., Zheng, J., Paradis, P., Schiffrin, E.L., and Galipeau, J. (2010). Induction of cardiac angiogenesis requires killer cell lectin-like receptor 1 and α4β7 integrin expression by NK cells. J. Immunol. 185, 7014-7025. https://doi.org/10.4049/jimmunol.1001888
  7. Butcher, E.C. and Picker, L.J. (1996). Lymphocyte homing and homeostasis. Science 272, 60-66. https://doi.org/10.1126/science.272.5258.60
  8. Chacon-Martinez, C.A., Koester, J., and Wickstrom, S.A. (2018). Signaling in the stem cell niche: regulating cell fate, function and plasticity. Development 145, dev165399. https://doi.org/10.1242/dev.165399
  9. Chen, S., Lewallen, M., and Xie, T. (2013). Adhesion in the stem cell niche: biological roles and regulation. Development 140, 255-265. https://doi.org/10.1242/dev.083139
  10. Choi, H., Song, H., and Jung, Y.W. (2020). The roles of CCR7 for the homing of memory CD8+ T cells into their survival niches. Immune Netw. 20, e20. https://doi.org/10.4110/in.2020.20.e20
  11. Crane, G.M., Jeffery, E., and Morrison, S.J. (2017). Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 17, 573-590. https://doi.org/10.1038/nri.2017.53
  12. Cyster, J.G. and Schwab, S.R. (2012). Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30, 69-94. https://doi.org/10.1146/annurev-immunol-020711-075011
  13. Derycke, L.D. and Bracke, M.E. (2004). N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. Int. J. Dev. Biol. 48, 463-476. https://doi.org/10.1387/ijdb.041793ld
  14. Gartner, A., Fornasiero, E.F., and Dotti, C.G. (2015). Cadherins as regulators of neuronal polarity. Cell Adh. Migr. 9, 175-182. https://doi.org/10.4161/19336918.2014.983808
  15. Goel, A.J., Rieder, M.K., Arnold, H.H., Radice, G.L., and Krauss, R.S. (2017). Niche cadherins control the quiescence-to-activation transition in muscle stem cells. Cell Rep. 21, 2236-2250. https://doi.org/10.1016/j.celrep.2017.10.102
  16. Hamann, D., Baars, P.A., Rep, M.H., Hooibrink, B., Kerkhof-Garde, S.R., Klein, M.R., and van Lier, R.A. (1997). Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186, 1407-1418. https://doi.org/10.1084/jem.186.9.1407
  17. Hayashi, R., Yamato, M., Sugiyama, H., Sumide, T., Yang, J., Okano, T., Tano, Y., and Nishida, K. (2007). N-Cadherin is expressed by putative stem/progenitor cells and melanocytes in the human limbal epithelial stem cell niche. Stem Cells 25, 289-296. https://doi.org/10.1634/stemcells.2006-0167
  18. Hofmann, M. and Pircher, H. (2011). E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. Proc. Natl. Acad. Sci. U. S. A. 108, 16741-16746. https://doi.org/10.1073/pnas.1107200108
  19. Jiang, X., Clark, R.A., Liu, L., Wagers, A.J., Fuhlbrigge, R.C., and Kupper, T.S. (2012). Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature 483, 227-231. https://doi.org/10.1038/nature10851
  20. Joshi, N.S., Cui, W., Chandele, A., Lee, H.K., Urso, D.R., Hagman, J., Gapin, L., and Kaech, S.M. (2007). Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281-295. https://doi.org/10.1016/j.immuni.2007.07.010
  21. Jung, Y.W., Kim, H.G., Perry, C.J., and Kaech, S.M. (2016). CCR7 expression alters memory CD8 T-cell homeostasis by regulating occupancy in IL-7-and IL-15-dependent niches. Proc. Natl. Acad. Sci. U. S. A. 113, 8278-8283. https://doi.org/10.1073/pnas.1602899113
  22. Jung, Y.W., Rutishauser, R.L., Joshi, N.S., Haberman, A.M., and Kaech, S.M. (2010). Differential localization of effector and memory CD8 T cell subsets in lymphoid organs during acute viral infection. J. Immunol. 185, 5315-5325. https://doi.org/10.4049/jimmunol.1001948
  23. Karpowicz, P., Willaime-Morawek, S., Balenci, L., DeVeale, B., Inoue, T., and van der Kooy, D. (2009). E-Cadherin regulates neural stem cell self-renewal. J. Neurosci. 29, 3885-3896. https://doi.org/10.1523/JNEUROSCI.0037-09.2009
  24. Li, H., Daculsi, R., Grellier, M., Bareille, R., Bourget, C., and Amedee, J. (2010). Role of neural-cadherin in early osteoblastic differentiation of human bone marrow stromal cells cocultured with human umbilical vein endothelial cells. Am. J. Physiol. Cell Physiol. 299, C422-C430. https://doi.org/10.1152/ajpcell.00562.2009
  25. Mackay, L.K., Rahimpour, A., Ma, J.Z., Collins, N., Stock, A.T., Hafon, M.L., Vega-Ramos, J., Lauzurica, P., Mueller, S.N., Stefanovic, T., et al. (2013). The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294-1301. https://doi.org/10.1038/ni.2744
  26. Martin, M.D. and Badovinac, V.P. (2018). Defining memory CD8 T cell. Front. Immunol. 9, 2692. https://doi.org/10.3389/fimmu.2018.02692
  27. Masai, I., Lele, Z., Yamaguchi, M., Komori, A., Nakata, A., Nishiwaki, Y., Wada, H., Tanaka, H., Nojima, Y., Hammerschmidt, M., et al. (2003). N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development 130, 2479-2494. https://doi.org/10.1242/dev.00465
  28. Masopust, D. and Picker, L.J. (2012). Hidden memories: frontline memory T cells and early pathogen interception. J. Immunol. 188, 5811-5817. https://doi.org/10.4049/jimmunol.1102695
  29. Matsunaga, M., Hatta, K., and Takeichi, M. (1988). Role of N-cadherin cell adhesion molecules in the histogenesis of neural retina. Neuron 1, 289-295. https://doi.org/10.1016/0896-6273(88)90077-3
  30. Morrison, S.J. and Scadden, D.T. (2014). The bone marrow niche for haematopoietic stem cells. Nature 505, 327-334. https://doi.org/10.1038/nature12984
  31. Mueller, S.N. and Mackay, L.K. (2016). Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79-89. https://doi.org/10.1038/nri.2015.3
  32. Nolz, J.C., Starbeck-Miller, G.R., and Harty, J.T. (2011). Naive, effector and memory CD8 T-cell trafficking: parallels and distinctions. Immunotherapy 3, 1223-1233. https://doi.org/10.2217/imt.11.100
  33. Park, S.M., Do-Thi, V.A., Lee, J.O., Lee, H., and Kim, Y.S. (2020). Interleukin-9 inhibits lung metastasis of melanoma through stimulating anti-tumor M1 macrophages. Mol. Cells 43, 479-490. https://doi.org/10.14348/molcells.2020.0047
  34. Sallusto, F., Lenig, D., Forster, R., Lipp, M., and Lanzavecchia, A. (1999). Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708-712. https://doi.org/10.1038/44385
  35. Schenkel, J.M. and Masopust, D. (2014). Tissue-resident memory T cells. Immunity 41, 886-897. https://doi.org/10.1016/j.immuni.2014.12.007
  36. Sheridan, B.S. and Lefrancois, L. (2011). Regional and mucosal memory T cells. Nat. Immunol. 12, 485-491. https://doi.org/10.1038/ni.2029
  37. Soncin, F. and Ward, C.M. (2011). The function of e-cadherin in stem cell pluripotency and self-renewal. Genes (Basel) 2, 229-259. https://doi.org/10.3390/genes2010229
  38. Surh, C.D. and Sprent, J. (2008). Homeostasis of naive and memory T cells. Immunity 29, 848-862. https://doi.org/10.1016/j.immuni.2008.11.002
  39. Tanchot, C., Lemonnier, F.A., Perarnau, B., Freitas, A.A., and Rocha, B. (1997). Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276, 2057-2062. https://doi.org/10.1126/science.276.5321.2057
  40. Tessmer, M.S., Fugere, C., Stevenaert, F., Naidenko, O.V., Chong, H.J., Leclercq, G., and Brossay, L. (2007). KLRG1 binds cadherins and preferentially associates with SHIP-1. Int. Immunol. 19, 391-400. https://doi.org/10.1093/intimm/dxm004
  41. Topham, D.J. and Reilly, E.C. (2018). Tissue-resident memory CD8(+) T cells: from phenotype to function. Front. Immunol. 9, 515. https://doi.org/10.3389/fimmu.2018.00515
  42. Watt, F.M. and Hogan, B.L. (2000). Out of Eden: stem cells and their niches. Science 287, 1427-1430. https://doi.org/10.1126/science.287.5457.1427
  43. Wilson, A. and Trumpp, A. (2006). Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 6, 93-106. https://doi.org/10.1038/nri1779
  44. Zhang, Q. and Lakkis, F.G. (2015). Memory T cell migration. Front. Immunol. 6, 504. https://doi.org/10.3389/fimmu.2015.00504
  45. Zhao, M., Tao, F., Venkatraman, A., Li, Z., Smith, S.E., Unruh, J., Chen, S., Ward, C., Qian, P., Perry, J.M., et al. (2019). N-cadherin-expressing bone and marrow stromal progenitor cells maintain reserve hematopoietic stem cells. Cell Rep. 26, 652-669.e6. https://doi.org/10.1016/j.celrep.2018.12.093