DOI QR코드

DOI QR Code

Optimization of FPGA-based DDR Memory Interface for better Compatibility and Speed

호환성 및 속도 향상을 위한 FPGA 기반 DDR 메모리 인터페이스의 최적화

  • Kim, Dae-Woon (Department of Electronics Engineering, Dong-A University) ;
  • Kang, Bong-Soon (Department of Electronics Engineering, Dong-A University)
  • Received : 2021.09.17
  • Accepted : 2021.10.05
  • Published : 2021.12.31

Abstract

With the development of advanced industries, research on image processing hardware is essential, and timing verification at the gate level is required for actual chip operation. For FPGA-based verification, DDR3 memory interface was previously applied. But recently, as the FPGA specification has improved, DDR4 memory is used. In this case, when a previously used memory interface is applied, the timing mismatch of signals may occur and thus cannot be used. This is due to the difference in performance between CPU and memory. In this paper, the problem is solved through state optimization of the existing interface system FSM. In this process, data read speed is doubled through AXI Data Width modification. For actual case analysis, ZC706 using DDR3 memory and ZCU106 using DDR4 memory among Xilinx's SoC boards are used.

첨단산업의 발전에 따라 영상처리 하드웨어의 연구는 필수적이고, 실제 칩 동작을 위해서는 게이트 수준의 타이밍 검증이 필요하다. 이를 위해 주로 FPGA 기반 검증이 이루어지는데 기존에는 DDR3 메모리 인터페이스를 적용했지만, 최근에는 FPGA 스펙이 향상되면서 DDR4 메모리가 사용된다. 이 때 기존에 사용하던 메모리 인터페이스를 적용하면 CPU와 메모리의 성능 차이에 의한 신호들의 타이밍 불일치가 발생하기 때문에 사용할 수 없다. 본 논문에서는 기존 인터페이스 시스템 FSM의 State 최적화를 통해 문제를 해결하고, 이 과정에서 AXI Data Width 수정을 통해 데이터 읽기 속도를 2배 증가시킨다. 실제 사례 분석을 위해 Xilinx 사의 SoC보드 중 DDR3 메모리를 사용하는 ZC706과 DDR4 메모리를 사용하는 ZCU106을 사용한다.

Keywords

References

  1. Y. J. Lee and J. R. Ryoo, "FPGA-based Hardware Design for Real-time High-resolution Color Image Warping," Journal of the Institute of Electronics and Information Engineers, vol. 58, no. 2, pp. 55-63, Feb. 2021. https://doi.org/10.5573/ieie.2021.58.2.55
  2. S. M. Lee and B. S. Kang, "Hardware design for haze removal of single image using cumulative histogram," Journal of IKEEE, vol. 23, no. 3, pp. 984-987, Sep. 2019. https://doi.org/10.7471/IKEEE.2019.23.3.984
  3. H. S. Son, S. Y. Lee, K. W. Min, and S. J. Seo, "Hardware Architecture Design and Implementation of IPM-based Curved Lane Detector," Journal of Korea Institute of Information, Electronics, and Communication Technology, vol. 10, no. 4, pp. 304-310, Aug. 2017. https://doi.org/10.17661/JKIIECT.2017.10.4.304
  4. G. J. Kim and B. S. Kang, "Hardware Design of Real-Time Wide Dynamic Range Algorithm Based on Tone Mapping Method for Image Quality Enhancement," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 2, pp. 270-275, Feb. 2018. https://doi.org/10.6109/JKIICE.2018.22.2.270
  5. H. C. Lee, H. H. Song, S. J. Lee, H. S. Jeon, H. S. Kim, and T. H. Im, "Design and Implementation of a Hardware Accelerator for Marine Object Detection based on a Binary Segmentation Algorithm for Ship Safety Navigation," Journal of the Korea Institute of Information and Communication Engineering, vol. 24, no. 10, pp. 1331-1340, Oct. 2020. https://doi.org/10.6109/JKIICE.2020.24.10.1331
  6. D. Ngo, G. D. Lee, and B. S. Kang, "A 4K-Capable FPGA Implementation of Single Image Haze Removal Using Hazy Particle Maps," Appl. Sci. 2019, vol. 9, no. 17, Sep. 2019.
  7. G. Du, J. Wu, H. Cao, K. Xing, Z. Li, D. Zhang, and X. Wang, "A Real-Time Effective Fusion-Based Image Defogging Architecture on FPGA," ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 17, no. 3, pp. 1-21, Jul. 2021.
  8. D. Ngo, S. M. Lee, Q. H. Nguyen, T. M. Ngo, G. D. Lee, and B. S. Kang, "Single Image Haze Removal from Image Enhancement Perspective for Real-Time Vision-Based Systems," Sensors, vol. 20, no. 18, 5170, Sep. 2020. https://doi.org/10.3390/s20185170
  9. D. W. Kim and B. S. Kang, "Color Correction with Optimized Hardware Implementation of CIE1931 Color Coordinate System Transformation," Journal of IKEEE, vol. 25, no. 1, pp. 10-14, Mar. 2021. https://doi.org/10.7471/IKEEE.2021.25.1.10
  10. Q. H. Nguyen and B. S. Kang, "FPGA-based Haze Removal Architecture Using Multiple-exposure Fusion," The Journal of Korean Institute of Information Technology, vol. 18, no. 5, pp. 85-90, May. 2020. https://doi.org/10.14801/jkiit.2020.18.5.85