DOI QR코드

DOI QR Code

Dependence of Q Factors on Core-cladding Index Contrast in Ring Resonators

  • Kim, Younghoon (Department of Electrical Engineering, Sejong University) ;
  • Kim, Kyoungyoum (Department of Electrical Engineering, Sejong University) ;
  • Moon, Hee-Jong (Department of Electrical Engineering, Sejong University) ;
  • Hyun, Kyung-Sook (Department of Electrical Engineering, Sejong University)
  • Received : 2021.10.12
  • Accepted : 2021.11.18
  • Published : 2021.12.25

Abstract

Transmission spectra are measured from waveguide-coupled ring resonators fabricated with SiNx on SiO2. By using ring resonators with various radii and several index contrasts, the behavior of the quality factors is investigated. As the index contrast decreases, the dominant loss is from scattering for a large resonator, while that changes from scattering loss to bending loss for a small resonator. We verify that the quality factor can be drastically improved by reducing the index contrast in large ring resonators.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2016R1D1A1B03933167).

References

  1. D. J. Blumenthal, R. Heidman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, "Silicon nitride in silicon photonics," Proc. IEEE 106, 2209-2231 (2018). https://doi.org/10.1109/JPROC.2018.2861576
  2. A. Frigg, A. Boes, G. Ren, I. Abdo, D. Y. Choi, S. Gees, and A. Mitchell, "Low loss CMOS-compatible silicon nitride photonics utilizing reactive sputtered thin films," Opt. Express 27, 37795-37805 (2019). https://doi.org/10.1364/oe.380758
  3. T. Sharma, J. Wang, B. K. Kaushik, Z. Cheng, R. Kumar, Z. Wei, and X. Li, "Review of recent progress on silicon nitride-based photonic integrated circuits," IEEE Access 8, 195436-195446 (2020). https://doi.org/10.1109/access.2020.3032186
  4. L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, "Silicon photonics: CMOS going optical," Proc. IEEE 97, 1161-1165 (2009). https://doi.org/10.1109/JPROC.2009.2021052
  5. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczeil, S. Srinivasan, Y. Tang, and J. E. Bowers, "Hybrid silicon photonic integrated circuit technology," IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013). https://doi.org/10.1109/JSTQE.2012.2235413
  6. T. Lipka, L. Moldenhauer, J. Muller, and H. K. Trieu, "Photonic integrated circuit components based on amorphous silicon-on-insulator technology," Photon. Res. 4, 126-134 (2016). https://doi.org/10.1364/PRJ.4.000126
  7. X. Xu, V. Fili, W. Szuba, M. Hiraishi, T. Inaba, T. Tawara, H. Omi, and H. Gotoh, "Epitaxial single-crystal rare-earth oxide in horizontal slot waveguide for silicon-based integrated active photonic devices," Opt. Express 28, 14448-14460 (2020). https://doi.org/10.1364/oe.389765
  8. D. Marpaung, B. Morrison, R. Pant, C. Roeloffzen, A. Leinse, M. Hoekman, R. Heideman, and B. J. Eggleton, "Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection," Opt. Express 21, 23286-23294 (2013). https://doi.org/10.1364/OE.21.023286
  9. M. C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, "Ultra-high quality factor planar Si3N4 ring resonators on Si substrates," Opt. Express 19, 13551-13556 (2011). https://doi.org/10.1364/OE.19.013551
  10. T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis," Opt. Express 12, 1437-1442 (2004). https://doi.org/10.1364/OPEX.12.001437
  11. Q. Xu, D. Fattal, and R. G. Beausoleil, "Silicon microring resonators with 1.5-μm radius," Opt. Express 16, 4309-4315 (2008). https://doi.org/10.1364/OE.16.004309
  12. A. H. K. Park, H. Shoman, M. Ma, S. Shekhar, and L. Chrostowsk, "Ring resonator based polarization diversity WDM receiver," Opt. Express 27, 6147-1657 (2019). https://doi.org/10.1364/oe.27.006147
  13. X. Fang and L. Yang, "Thermal effect analysis of silicon microring optical switch for on-chip interconnect," J. Semicond. 38, 104004 (2017). https://doi.org/10.1088/1674-4926/38/10/104004
  14. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "Cascade silicon micro-ring modulators for WDM optical interconnection," Opt. Express 14, 9431-9436 (2006). https://doi.org/10.1364/OE.14.009431
  15. B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, "Turn-key, high-efficiency kerr comb source," Opt. Lett. 44, 4475-4478 (2019). https://doi.org/10.1364/ol.44.004475
  16. A. Frigg, A. Boes, G. Ren, T. G. Nguyen, D. Y. Choi, S. Gees, D. Moss, and A. Mitchell, "Optical frequency comb generation with low temperature reactive sputtered silicon nitride waveguides," APL Photon. 5, 011302 (2020). https://doi.org/10.1063/1.5136270
  17. D. X. Xu, A. Densmore, A. Delage, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, "Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding," Opt. Express 16, 15137-15148 (2008). https://doi.org/10.1364/OE.16.015137
  18. L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F Jaeger, "Silicon photonics resonator sensors and devices," Proc. SPIE 8236, 823620 (2012). https://doi.org/10.1117/12.916860
  19. C. L. Arce, K. D. Vos, T. Claes, K. Komorowska, D. V. Thourhout, and P. Bienstman, "Silicon-on-insulator microring resonator sensor integrated on an optical fiber facet," IEEE Photon. Technol. Lett. 23, 890-892 (2011). https://doi.org/10.1109/LPT.2011.2143704
  20. H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, "Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures," Opt. Express 22, 3098-3104 (2014). https://doi.org/10.1364/OE.22.003098
  21. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator," in Proc. IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings (Lake Buena Vista, USA, Oct. 2007), pp. 537-538.
  22. T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, "50-Gb/s ring-resonator-based silicon modulator," Opt. Express 21, 11869-11876 (2013). https://doi.org/10.1364/OE.21.011869
  23. C. Xiang, W. Jin, J. Guo, C. Williams, A. M. Netherton, L. Chang, P. A. Morton, and J. E. Bowers, "Effects of nonlinear loss in high-Q Si ring resonators for narrow-linewidth III-V/Si heterogeneously integrated tunable lasers," Opt. Express 28, 19926-19936 (2020). https://doi.org/10.1364/oe.394491
  24. D. G. Rabus, Z. Bian, and A. Shakouri, "Ring Resonator Lasers using Passive Waveguides and Integrated Semiconductor Optical Amplifiers," IEEE J. Sel. Top. Quantum Electron. 13, 1249-1256 (2007). https://doi.org/10.1109/JSTQE.2007.906043
  25. S. Srinivasan, M. Davenport, T. Komljenovic, J. Hulme, D. T. Spencer, and J. E. Bowers, "Coupled-ring-resonator-mirror-based heterogeneous III-V silicon tunable laser," IEEE Photonics J. 7, 2700908 (2015).
  26. H.-J. Moon, J.-W. Lee, K.-S. Hyun, and D. C. Jeong, "Lasing of coupled guided modes in modified hollow hexagonal semiconductor cavities," J. Opt. Soc. Korea 18, 377-381 (2014). https://doi.org/10.3807/JOSK.2014.18.4.377
  27. H. E. Dirani, L. Youssef, C. Petit-Etienne, S. Kerdiles, P. Grosse, C. Monat, E. Pargon, and C. Sciancalepore, "Ultra-loss tightly confining Si3N4 waveguides and high-Q microresonators," Opt. Express 27, 30726-30740 (2019). https://doi.org/10.1364/oe.27.030726
  28. M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T Sullivan, "Fabrication techniques for low-loss silicon nitride waveguides," Proc. SPIE 5720, 109-118 (2005). https://doi.org/10.1117/12.588828
  29. M. R. Bryan, D. J. Steiner, J. S. Cognetti, and B. L. Miller, "Design, manufacture, and testing of a silicon nitride ring resonator-based biosensing platform," Proc. SPIE 10629, 106290Z (2018).
  30. T. D. Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, "Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications," J. Phys. D 50, 025106 (2017). https://doi.org/10.1088/0022-3727/50/2/025106
  31. D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, "Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime," Optica 1, 153-157 (2014). https://doi.org/10.1364/OPTICA.1.000153
  32. J. P. R. Lacey and F. P. Payne, "Radiation loss from planar waveguides with random wall imperfections," IEEE Proc. J. 137, 282-289 (1990).
  33. P. Rabiei, "Calculation of losses in micro-ring resonators with arbitrary refractive index or shape profile and its applications," J. Light. Technol. 23, 1295 (2005). https://doi.org/10.1109/JLT.2004.841437
  34. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, "Silicon microring resonators," Laser Photonics Rev. 6, 47-73 (2012). https://doi.org/10.1002/lpor.201100017
  35. S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Compact silicon microring resonators with ultra-low propagation loss in the C band," Opt. Express 15, 14467-14475 (2007). https://doi.org/10.1364/OE.15.014467
  36. S. Xiao, M. H, Khan, H. Shen, and M. Qi, "Modeling and measurement of losses in silicon-on-insulator resonators and bends," Opt. Express 15, 10553-10561 (2007). https://doi.org/10.1364/OE.15.010553
  37. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisk," Appl. Phys. Lett. 85, 3693-3695 (2004). https://doi.org/10.1063/1.1811378
  38. J. E. Heebner, T. C. Bond, and J. S. Kallman, "Generalized formulations for performance due to bending and edge scattering loss in microdisk resonators," Opt. Express 15, 4452-4473 (2007). https://doi.org/10.1364/OE.15.004452
  39. X. Cheng, J. Hong, A. M. Spring, and S. Yokoyama. "Fabrication of a high-Q factor ring resonator using LSCVD deposited Si3N4 film," Opt. Mater. Express 7, 2182-2187 (2017). https://doi.org/10.1364/OME.7.002182