DOI QR코드

DOI QR Code

세슘 원자 증기 기반 광 증폭기의 온도와 빔 크기에 따른 광 증폭 특성 연구

Study of the Variation of Optical Amplification Characteristics with Incident Beam Size and Temperature of a Cesium-vapor-based Optical Amplifier

  • 류시헌 (아주대학교 에너지시스템학과) ;
  • 정유재 (아주대학교 에너지시스템학과) ;
  • 염동일 (아주대학교 에너지시스템학과)
  • Ryu, Siheon (Department of Energy Systems Research, Ajou University) ;
  • Jeong, Yujae (Department of Energy Systems Research, Ajou University) ;
  • Yeom, Dong-Il (Department of Energy Systems Research, Ajou University)
  • 투고 : 2021.10.28
  • 심사 : 2021.11.15
  • 발행 : 2021.12.25

초록

버퍼가스와 세슘 증기가 혼합된 광 증폭 시스템을 구성하고 세슘 용기의 온도 및 빔 직경의 변화에 따른 광 증폭 특성을 조사하였다. 광 증폭인자 및 추출 효율 등 광 증폭기 특성이 세슘 용기의 온도 및 빔 직경에 따라 크게 변하는 것을 확인하였는데, 90 ℃의 세슘 용기온도에서 200 ㎛ 직경을 가진 펌프(500 mW) 및 씨앗 광(10 mW)이 입사하였을 때 최대 56%의 광 추출효율을 얻을 수 있었다. 또한, 전산 모사를 통하여 계산한 광 증폭 특성이 실험으로부터 얻은 결과와 합리적으로 일치하는 것을 확인하였다.

We study the amplification properties of an optical amplifier based on a cesium-vapor cell. An optical amplification system including cesium vapor mixed with a buffer gas is built, and its amplification feature is investigated as a function of the size of the incident beam and the temperature of the cesium-vapor cell. We observe that the optical amplification properties, such as amplification factor and extraction efficiency, change significantly depending on the temperature and beam diameter of the pump and seed light. A maximum extraction efficiency of 56% is obtained when the temperature of the cesium cell is 90 ℃, with a 200-㎛ diameter of the pump (500 mW) and seed light (10 mW). The numerical simulation of the amplification properties agrees reasonably with the results obtained from the experiment.

키워드

과제정보

이 연구는 고효율레이저 특화연구실 프로그램의 일환으로 국방과학연구소의 지원으로 수행되었음(No. UD190015ID).

참고문헌

  1. T. H. Maiman, "Stimulated optical radiation in ruby," Nature 187, 493-494 (1960). https://doi.org/10.1038/187493a0
  2. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, "Double clad, offset core Nd fiber laser," in Optical fiber sensors (Optical Society of America, 1988), paper PD5.
  3. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004). https://doi.org/10.1364/OPEX.12.006088
  4. L. Zenteno, "High-power double-clad fiber lasers," J. Lightwave Technol. 11, 1435-1446 (1993). https://doi.org/10.1109/50.241933
  5. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 55, 447-449 (1985). https://doi.org/10.1016/0030-4018(85)90151-8
  6. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006). https://doi.org/10.1109/JSTQE.2006.872729
  7. E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-541 (1972). https://doi.org/10.1063/1.1654249
  8. N. A. Brilliant, "Stimulated Brillouin scattering in a dual-clad fiber amplifier," J. Opt. Soc. Am. B 19, 2551-2557 (2002). https://doi.org/10.1364/JOSAB.19.002551
  9. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, "Resonance transition 795-nm rubidium laser," Opt. Lett. 28, 2336-2338 (2003). https://doi.org/10.1364/OL.28.002336
  10. W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, "New class of cw high-power diode-pumped alkali lasers (DPALs)," Proc. SPIE 5448, 7-17 (2004). https://doi.org/10.1117/12.547954
  11. W. F. Krupke, R. J. Beach, S. A. Payne, V. K. Kanz, and J. T. Early, "DPAL: a new class of lasers for CW power beaming at ideal photovoltaic cell wavelengths," AIP Conf. Proc. 702, 367 (2004).
  12. W. F. Krupke, "Diode pumped alkali lasers (DPALs): an overview," Proc. SPIE 7005, 700521 (2008). https://doi.org/10.1117/12.782466
  13. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, "End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling," J. Opt. Soc. Am. B 21, 2151-2163 (2004). https://doi.org/10.1364/JOSAB.21.002151
  14. B. V. Zhdanov and R. J. Knize, "Review of alkali laser research and development," Opt. Eng. 52, 021010 (2012). https://doi.org/10.1117/1.OE.52.2.021010
  15. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, "Potassium diode pumped alkali laser demonstration using a closed cycle flowing system," Opt. Commun. 354, 256- 258 (2015). https://doi.org/10.1016/j.optcom.2015.06.010
  16. G. A. Pitz and M. D. Anderson, "Recent advances in optically pumped alkali lasers," Appl. Phys. Rev. 4, 041101 (2017). https://doi.org/10.1063/1.5006913
  17. J. Grosek, S. Naderi, B. Oliker, R. Lane, I. Dajani, and T. Madden, "Laser simulation at the Air Force Research Laboratory," Proc. SPIE 10254, 102450N (2017).
  18. W. F. Krupke, "Diode pumped alkali lasers (DPALs)-A review (rev1)," Prog. Quantum Electron. 36, 4-28 (2012). https://doi.org/10.1016/j.pquantelec.2011.09.001
  19. D. A. Hostutler and W. L. Klennert, "Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier," Opt. Express 16, 8050-8053 (2008). https://doi.org/10.1364/OE.16.008050
  20. B. V. Zhdanov and R. J. Knife, "Efficient diode pumped cesium vapor amplifier," Opt. Commun. 281, 4068-4070 (2008). https://doi.org/10.1016/j.optcom.2008.04.018
  21. P. Bai-Liang, W. Ya-Juan, Z. Qi, and Y. Jing, "Modeling of an alkali vapor laser MOPA system," Opt. Commun. 284, 1963-1966 (2011). https://doi.org/10.1016/j.optcom.2010.12.002
  22. Y. Li, W. Hua, L. Li, H. Wang, Z. Yang, and X. Xu, "Experimental research of a chain of diode pumped rubidium amplifiers," Opt. Express 23, 25906-25911 (2015). https://doi.org/10.1364/OE.23.025906
  23. D. A. Steck, "Cesium D line data," (Daniel A. Steck, Published date: 2003 October 14), https://steck.us/alkalidata/ (Accessed date: 2021 October 1).
  24. D. A. Steck, "Rubidium 87 D line data," (Daniel A. Steck, Published date: 2003), https://steck.us/alkalidata/ (Accessed date: 2021 October 1).
  25. T. G. Tiecke, "Properties of potassium," Ph. D. dissertation, University of Amsterdam, The Netherlands (2010), p. 2.
  26. Z. Yang, H. Wang, Q. Lu, W. Hua, and X. Xu, "Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission," Opt. Express 19, 23118-23131 (2011). https://doi.org/10.1364/OE.19.023118
  27. P. Bai-Liang, W. Ya-Juan, Z. Qi, and Y. Jing, "Modeling of an alkali vapor laser MOPA system," Opt. Commun. 284, 1963-1966 (2011). https://doi.org/10.1016/j.optcom.2010.12.002
  28. M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, "Output power characteristics of diode-pumped cesium vapor laser," Jpn. J. Appl. Phys. 54, 122701 (2015). https://doi.org/10.7567/JJAP.54.122701