Browse > Article
http://dx.doi.org/10.3807/KJOP.2021.32.6.306

Study of the Variation of Optical Amplification Characteristics with Incident Beam Size and Temperature of a Cesium-vapor-based Optical Amplifier  

Ryu, Siheon (Department of Energy Systems Research, Ajou University)
Jeong, Yujae (Department of Energy Systems Research, Ajou University)
Yeom, Dong-Il (Department of Energy Systems Research, Ajou University)
Publication Information
Korean Journal of Optics and Photonics / v.32, no.6, 2021 , pp. 306-313 More about this Journal
Abstract
We study the amplification properties of an optical amplifier based on a cesium-vapor cell. An optical amplification system including cesium vapor mixed with a buffer gas is built, and its amplification feature is investigated as a function of the size of the incident beam and the temperature of the cesium-vapor cell. We observe that the optical amplification properties, such as amplification factor and extraction efficiency, change significantly depending on the temperature and beam diameter of the pump and seed light. A maximum extraction efficiency of 56% is obtained when the temperature of the cesium cell is 90 ℃, with a 200-㎛ diameter of the pump (500 mW) and seed light (10 mW). The numerical simulation of the amplification properties agrees reasonably with the results obtained from the experiment.
Keywords
Alkali laser; Optical pumping alkali amplifier;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. A. Brilliant, "Stimulated Brillouin scattering in a dual-clad fiber amplifier," J. Opt. Soc. Am. B 19, 2551-2557 (2002).   DOI
2 W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, "Resonance transition 795-nm rubidium laser," Opt. Lett. 28, 2336-2338 (2003).   DOI
3 W. F. Krupke, R. J. Beach, S. A. Payne, V. K. Kanz, and J. T. Early, "DPAL: a new class of lasers for CW power beaming at ideal photovoltaic cell wavelengths," AIP Conf. Proc. 702, 367 (2004).
4 W. F. Krupke, "Diode pumped alkali lasers (DPALs): an overview," Proc. SPIE 7005, 700521 (2008).   DOI
5 B. V. Zhdanov and R. J. Knize, "Review of alkali laser research and development," Opt. Eng. 52, 021010 (2012).   DOI
6 G. A. Pitz and M. D. Anderson, "Recent advances in optically pumped alkali lasers," Appl. Phys. Rev. 4, 041101 (2017).   DOI
7 W. F. Krupke, "Diode pumped alkali lasers (DPALs)-A review (rev1)," Prog. Quantum Electron. 36, 4-28 (2012).   DOI
8 T. G. Tiecke, "Properties of potassium," Ph. D. dissertation, University of Amsterdam, The Netherlands (2010), p. 2.
9 D. A. Hostutler and W. L. Klennert, "Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier," Opt. Express 16, 8050-8053 (2008).   DOI
10 D. A. Steck, "Rubidium 87 D line data," (Daniel A. Steck, Published date: 2003), https://steck.us/alkalidata/ (Accessed date: 2021 October 1).
11 P. Bai-Liang, W. Ya-Juan, Z. Qi, and Y. Jing, "Modeling of an alkali vapor laser MOPA system," Opt. Commun. 284, 1963-1966 (2011).   DOI
12 M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, "Output power characteristics of diode-pumped cesium vapor laser," Jpn. J. Appl. Phys. 54, 122701 (2015).   DOI
13 P. Bai-Liang, W. Ya-Juan, Z. Qi, and Y. Jing, "Modeling of an alkali vapor laser MOPA system," Opt. Commun. 284, 1963-1966 (2011).   DOI
14 L. Zenteno, "High-power double-clad fiber lasers," J. Lightwave Technol. 11, 1435-1446 (1993).   DOI
15 T. H. Maiman, "Stimulated optical radiation in ruby," Nature 187, 493-494 (1960).   DOI
16 E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, "Double clad, offset core Nd fiber laser," in Optical fiber sensors (Optical Society of America, 1988), paper PD5.
17 Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).   DOI
18 D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 55, 447-449 (1985).   DOI
19 J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).   DOI
20 E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-541 (1972).   DOI
21 W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, "New class of cw high-power diode-pumped alkali lasers (DPALs)," Proc. SPIE 5448, 7-17 (2004).   DOI
22 B. V. Zhdanov and R. J. Knife, "Efficient diode pumped cesium vapor amplifier," Opt. Commun. 281, 4068-4070 (2008).   DOI
23 D. A. Steck, "Cesium D line data," (Daniel A. Steck, Published date: 2003 October 14), https://steck.us/alkalidata/ (Accessed date: 2021 October 1).
24 Z. Yang, H. Wang, Q. Lu, W. Hua, and X. Xu, "Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission," Opt. Express 19, 23118-23131 (2011).   DOI
25 B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, "Potassium diode pumped alkali laser demonstration using a closed cycle flowing system," Opt. Commun. 354, 256- 258 (2015).   DOI
26 J. Grosek, S. Naderi, B. Oliker, R. Lane, I. Dajani, and T. Madden, "Laser simulation at the Air Force Research Laboratory," Proc. SPIE 10254, 102450N (2017).
27 Y. Li, W. Hua, L. Li, H. Wang, Z. Yang, and X. Xu, "Experimental research of a chain of diode pumped rubidium amplifiers," Opt. Express 23, 25906-25911 (2015).   DOI
28 R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, "End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling," J. Opt. Soc. Am. B 21, 2151-2163 (2004).   DOI