References
- Bluthgen, N., van Bentum, M., Merz, B., Kuhl, D., and Hermey, G. (2017). Profiling the MAPK/ERK dependent and independent activity regulated transcriptional programs in the murine hippocampus in vivo. Sci. Rep. 7, 45101. https://doi.org/10.1038/srep45101
- Charlton, S.J. and Vauquelin, G. (2010). Elusive equilibrium: the challenge of interpreting receptor pharmacology using calcium assays. Br. J. Pharmacol. 161, 1250-1265. https://doi.org/10.1111/j.1476-5381.2010.00863.x
- Cho, J.H., Swanson, C.J., Chen, J., Li, A., Lippert, L.G., Boye, S.E., Rose, K., Sivaramakrishnan, S., Chuong, C.M., and Chow, R.H. (2017). The GCaMP-R family of genetically encoded ratiometric calcium indicators. ACS Chem. Biol. 12, 1066-1074. https://doi.org/10.1021/acschembio.6b00883
- Conklin, B.R., Farfel, Z., Lustig, K.D., Julius, D., and Bourne, H.R. (1993). Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha. Nature 363, 274-276. https://doi.org/10.1038/363274a0
- Cui, C., Merritt, R., Fu, L., and Pan, Z. (2017). Targeting calcium signaling in cancer therapy. Acta Pharm. Sin. B 7, 3-17. https://doi.org/10.1016/j.apsb.2016.11.001
- Dixon, A.S., Schwinn, M.K., Hall, M.P., Zimmerman, K., Otto, P., Lubben, T.H., Butler, B.L., Binkowski, B.F., Machleidt, T., Kirkland, T.A., et al. (2016). NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400-408. https://doi.org/10.1021/acschembio.5b00753
- Farhana, I., Hossain, M.N., Suzuki, K., Matsuda, T., and Nagai, T. (2019) . Genetically encoded fluorescence/bioluminescence bimodal indicators for Ca(2+) imaging. ACS Sens. 4, 1825-1834. https://doi.org/10.1021/acssensors.9b00531
- Gooz, M., Gooz, P., Luttrell, L.M., and Raymond, J.R. (2006). 5-HT2A receptor induces ERK phosphorylation and proliferation through ADAM-17 tumor necrosis factor-alpha-converting enzyme (TACE) activation and heparin-bound epidermal growth factor-like growth factor (HB-EGF) shedding in mesangial cells. J. Biol. Chem. 281, 21004-21012. https://doi.org/10.1074/jbc.M512096200
- Grundmann, M. and Kostenis, E. (2017). Temporal bias: time-encoded dynamic GPCR signaling. Trends Pharmacol. Sci. 38, 1110-1124. https://doi.org/10.1016/j.tips.2017.09.004
- Guerrero-Hernandez, A. and Verkhratsky, A. (2014). Calcium signalling in diabetes. Cell Calcium 56, 297-301. https://doi.org/10.1016/j.ceca.2014.08.009
- Hardingham, G.E., Chawla, S., Johnson, C.M., and Bading, H. (1997). Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385, 260-265. https://doi.org/10.1038/385260a0
- Hothersall, J.D., Brown, A.J., Dale, I., and Rawlins, P. (2016). Can residence time offer a useful strategy to target agonist drugs for sustained GPCR responses? Drug Discov. Today 21, 90-96. https://doi.org/10.1016/j.drudis.2015.07.015
- Kanazawa, T., Misawa, K., Misawa, Y., Uehara, T., Fukushima, H., Kusaka, G., Maruta, M., and Carey, T.E. (2015). G-protein-coupled receptors: next generation therapeutic targets in head and neck cancer? Toxins (Basel) 7, 2959-2984. https://doi.org/10.3390/toxins7082959
- Luo, J., Zhu, Y., Zhu, M.X., and Hu, H. (2011). Cell-based calcium assay for medium to high throughput screening of TRP channel functions using FlexStation 3. J. Vis. Exp. (54), 3149.
- Ly, L.D., Ly, D.D., Nguyen, N.T., Kim, J.H., Yoo, H., Chung, J., Lee, M.S., Cha, S.K., and Park, K.S. (2020). Mitochondrial Ca(2+) uptake relieves palmitate-induced cytosolic Ca(2+) overload in MIN6 cells. Mol. Cells 43, 66-75. https://doi.org/10.14348/molcells.2019.0223
- Ma, Q., Ye, L., Liu, H., Shi, Y., and Zhou, N. (2017). An overview of Ca(2+) mobilization assays in GPCR drug discovery. Expert Opin. Drug Discov. 12, 511-523. https://doi.org/10.1080/17460441.2017.1303473
- Mank, M. and Griesbeck, O. (2008). Genetically encoded calcium indicators. Chem. Rev. 108, 1550-1564. https://doi.org/10.1021/cr078213v
- McCombs, J.E. and Palmer, A.E. (2008). Measuring calcium dynamics in living cells with genetically encodable calcium indicators. Methods 46, 152-159. https://doi.org/10.1016/j.ymeth.2008.09.015
- Monteith, G.R. and Bird, G.S. (2005). Techniques: high-throughput measurement of intracellular Ca(2+) -- back to basics. Trends Pharmacol. Sci. 26, 218-223. https://doi.org/10.1016/j.tips.2005.02.002
- Nagai, T., Horikawa, K., Saito, K., and Matsuda, T. (2014). Genetically encoded Ca(2+) indicators; expanded affinity range, color hue and compatibility with optogenetics. Front. Mol. Neurosci. 7, 90.
- Niedernberg, A., Tunaru, S., Blaukat, A., Harris, B., and Kostenis, E. (2003). Comparative analysis of functional assays for characterization of agonist ligands at G protein-coupled receptors. J. Biomol. Screen. 8, 500-510. https://doi.org/10.1177/1087057103257555
- Nowycky, M.C. and Thomas, A.P. (2002). Intracellular calcium signaling. J. Cell Sci. 115, 3715-3716. https://doi.org/10.1242/jcs.00078
- Paredes, R.M., Etzler, J.C., Watts, L.T., Zheng, W., and Lechleiter, J.D. (2008). Chemical calcium indicators. Methods 46, 143-151. https://doi.org/10.1016/j.ymeth.2008.09.025
- Perez Koldenkova, V. and Nagai, T. (2013). Genetically encoded Ca(2+) indicators: properties and evaluation. Biochim. Biophys. Acta 1833, 1787-1797. https://doi.org/10.1016/j.bbamcr.2013.01.011
- Qian, Y., Rancic, V., Wu, J., Ballanyi, K., and Campbell, R.E. (2019). A bioluminescent Ca(2+) indicator based on a topological variant of GCaMP6s. Chembiochem 20, 516-520. https://doi.org/10.1002/cbic.201800255
- Rhodes, D.R., Ateeq, B., Cao, Q., Tomlins, S.A., Mehra, R., Laxman, B., Kalyana-Sundaram, S., Lonigro, R.J., Helgeson, B.E., Bhojani, M.S., et al. (2009). AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist. Proc. Natl. Acad. Sci. U. S. A. 106, 10284-10289. https://doi.org/10.1073/pnas.0900351106
- Strasser, A., Wittmann, H.J., and Seifert, R. (2017). Binding kinetics and pathways of ligands to GPCRs. Trends Pharmacol. Sci. 38, 717-732. https://doi.org/10.1016/j.tips.2017.05.005
- Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M.E., Chalasani, S.H., Petreanu, L., Akerboom, J., McKinney, S.A., Schreiter, E.R., et al. (2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875-881. https://doi.org/10.1038/nmeth.1398
- Tsien, R.Y. (1980). New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19, 2396-2404. https://doi.org/10.1021/bi00552a018
- Varghese, E., Samuel, S.M., Sadiq, Z., Kubatka, P., Liskova, A., Benacka, J., Pazinka, P., Kruzliak, P., and Busselberg, D. (2019). Anti-cancer agents in proliferation and cell death: the calcium connection. Int. J. Mol. Sci. 20, 3017. https://doi.org/10.3390/ijms20123017
- Wacker, D., Stevens, R.C., and Roth, B.L. (2017). How ligands illuminate GPCR molecular pharmacology. Cell 170, 414-427. https://doi.org/10.1016/j.cell.2017.07.009
- Wu, N., Nishioka, W.K., Derecki, N.C., and Maher, M.P. (2019). High-throughput-compatible assays using a genetically-encoded calcium indicator. Sci. Rep. 9, 12692. https://doi.org/10.1038/s41598-019-49070-8
- Wu, S.C. and O'Connell, T.D. (2015). Nuclear compartmentalization of alpha1-adrenergic receptor signaling in adult cardiac myocytes. J. Cardiovasc. Pharmacol. 65, 91-100. https://doi.org/10.1097/fjc.0000000000000165
- Yang, J., Cumberbatch, D., Centanni, S., Shi, S.Q., Winder, D., Webb, D., and Johnson, C.H. (2016). Coupling optogenetic stimulation with NanoLuc-based luminescence (BRET) Ca(++) sensing. Nat. Commun. 7, 13268. https://doi.org/10.1038/ncomms13268
- Yang, Y., Liu, N., He, Y., Liu, Y., Ge, L., Zou, L., Song, S., Xiong, W., and Liu, X. (2018). Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP. Nat. Commun. 9, 1504. https://doi.org/10.1038/s41467-018-03719-6
- Yasunaga, M., Murotomi, K., Abe, H., Yamazaki, T., Nishii, S., Ohbayashi, T., Oshimura, M., Noguchi, T., Niwa, K., Ohmiya, Y., et al. (2015). Highly sensitive luciferase reporter assay using a potent destabilization sequence of calpain 3. J. Biotechnol. 194, 115-123. https://doi.org/10.1016/j.jbiotec.2014.12.004
- Zhang, H.M., Li, L., Papadopoulou, N., Hodgson, G., Evans, E., Galbraith, M., Dear, M., Vougier, S., Saxton, J., and Shaw, P.E. (2008). Mitogen-induced recruitment of ERK and MSK to SRE promoter complexes by ternary complex factor Elk-1. Nucleic Acids Res. 36, 2594-2607. https://doi.org/10.1093/nar/gkn099
- Zhu, T., Fang, L.Y., and Xie, X. (2008). Development of a universal high-throughput calcium assay for G-protein- coupled receptors with promiscuous G-protein Galpha15/16. Acta Pharmacol. Sin. 29, 507-516. https://doi.org/10.1111/j.1745-7254.2008.00775.x
Cited by
- A Genetically Encoded Bioluminescence Intracellular Nanosensor for Androgen Receptor Activation Monitoring in 3D Cell Models vol.21, pp.3, 2020, https://doi.org/10.3390/s21030893
- Regulation of PXR Function by Coactivator and Corepressor Proteins: Ligand Binding Is Just the Beginning vol.10, pp.11, 2021, https://doi.org/10.3390/cells10113137