DOI QR코드

DOI QR Code

Establishment of a NanoBiT-Based Cytosolic Ca2+ Sensor by Optimizing Calmodulin-Binding Motif and Protein Expression Levels

  • Nguyen, Lan Phuong (Department of Biomedical Sciences, Korea University College of Medicine) ;
  • Nguyen, Huong Thi (Department of Biomedical Sciences, Korea University College of Medicine) ;
  • Yong, Hyo Jeong (Department of Biomedical Sciences, Korea University College of Medicine) ;
  • Reyes-Alcaraz, Arfaxad (College of Pharmacy, University of Houston) ;
  • Lee, Yoo-Na (Department of Biomedical Sciences, Korea University College of Medicine) ;
  • Park, Hee-Kyung (Department of Biomedical Sciences, Korea University College of Medicine) ;
  • Na, Yun Hee (Department of Biomedical Sciences, Korea University College of Medicine) ;
  • Lee, Cheol Soon (Department of Biomedical Sciences, Korea University College of Medicine) ;
  • Ham, Byung-Joo (Department of Psychiatry, Korea University College of Medicine) ;
  • Seong, Jae Young (Department of Biomedical Sciences, Korea University College of Medicine) ;
  • Hwang, Jong-Ik (Department of Biomedical Sciences, Korea University College of Medicine)
  • Received : 2020.07.04
  • Accepted : 2020.09.17
  • Published : 2020.11.30

Abstract

Cytosolic Ca2+ levels ([Ca2+]c) change dynamically in response to inducers, repressors, and physiological conditions, and aberrant [Ca2+]c concentration regulation is associated with cancer, heart failure, and diabetes. Therefore, [Ca2+]c is considered as a good indicator of physiological and pathological cellular responses, and is a crucial biomarker for drug discovery. A genetically encoded calcium indicator (GECI) was recently developed to measure [Ca2+]c in single cells and animal models. GECI have some advantages over chemically synthesized indicators, although they also have some drawbacks such as poor signal-to-noise ratio (SNR), low positive signal, delayed response, artifactual responses due to protein overexpression, and expensive detection equipment. Here, we developed an indicator based on interactions between Ca2+-loaded calmodulin and target proteins, and generated an innovative GECI sensor using split nano-luciferase (Nluc) fragments to detect changes in [Ca2+]c. Stimulation-dependent luciferase activities were optimized by combining large and small subunits of Nluc binary technology (NanoBiT, LgBiT:SmBiT) fusion proteins and regulating the receptor expression levels. We constructed the binary [Ca2+]c sensors using a multicistronic expression system in a single vector linked via the internal ribosome entry site (IRES), and examined the detection efficiencies. Promoter optimization studies indicated that promoter-dependent protein expression levels were crucial to optimize SNR and sensitivity. This novel [Ca2+]c assay has high SNR and sensitivity, is easy to use, suitable for high-throughput assays, and may be useful to detect [Ca2+]c in single cells and animal models.

Keywords

References

  1. Bluthgen, N., van Bentum, M., Merz, B., Kuhl, D., and Hermey, G. (2017). Profiling the MAPK/ERK dependent and independent activity regulated transcriptional programs in the murine hippocampus in vivo. Sci. Rep. 7, 45101. https://doi.org/10.1038/srep45101
  2. Charlton, S.J. and Vauquelin, G. (2010). Elusive equilibrium: the challenge of interpreting receptor pharmacology using calcium assays. Br. J. Pharmacol. 161, 1250-1265. https://doi.org/10.1111/j.1476-5381.2010.00863.x
  3. Cho, J.H., Swanson, C.J., Chen, J., Li, A., Lippert, L.G., Boye, S.E., Rose, K., Sivaramakrishnan, S., Chuong, C.M., and Chow, R.H. (2017). The GCaMP-R family of genetically encoded ratiometric calcium indicators. ACS Chem. Biol. 12, 1066-1074. https://doi.org/10.1021/acschembio.6b00883
  4. Conklin, B.R., Farfel, Z., Lustig, K.D., Julius, D., and Bourne, H.R. (1993). Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha. Nature 363, 274-276. https://doi.org/10.1038/363274a0
  5. Cui, C., Merritt, R., Fu, L., and Pan, Z. (2017). Targeting calcium signaling in cancer therapy. Acta Pharm. Sin. B 7, 3-17. https://doi.org/10.1016/j.apsb.2016.11.001
  6. Dixon, A.S., Schwinn, M.K., Hall, M.P., Zimmerman, K., Otto, P., Lubben, T.H., Butler, B.L., Binkowski, B.F., Machleidt, T., Kirkland, T.A., et al. (2016). NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400-408. https://doi.org/10.1021/acschembio.5b00753
  7. Farhana, I., Hossain, M.N., Suzuki, K., Matsuda, T., and Nagai, T. (2019) . Genetically encoded fluorescence/bioluminescence bimodal indicators for Ca(2+) imaging. ACS Sens. 4, 1825-1834. https://doi.org/10.1021/acssensors.9b00531
  8. Gooz, M., Gooz, P., Luttrell, L.M., and Raymond, J.R. (2006). 5-HT2A receptor induces ERK phosphorylation and proliferation through ADAM-17 tumor necrosis factor-alpha-converting enzyme (TACE) activation and heparin-bound epidermal growth factor-like growth factor (HB-EGF) shedding in mesangial cells. J. Biol. Chem. 281, 21004-21012. https://doi.org/10.1074/jbc.M512096200
  9. Grundmann, M. and Kostenis, E. (2017). Temporal bias: time-encoded dynamic GPCR signaling. Trends Pharmacol. Sci. 38, 1110-1124. https://doi.org/10.1016/j.tips.2017.09.004
  10. Guerrero-Hernandez, A. and Verkhratsky, A. (2014). Calcium signalling in diabetes. Cell Calcium 56, 297-301. https://doi.org/10.1016/j.ceca.2014.08.009
  11. Hardingham, G.E., Chawla, S., Johnson, C.M., and Bading, H. (1997). Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385, 260-265. https://doi.org/10.1038/385260a0
  12. Hothersall, J.D., Brown, A.J., Dale, I., and Rawlins, P. (2016). Can residence time offer a useful strategy to target agonist drugs for sustained GPCR responses? Drug Discov. Today 21, 90-96. https://doi.org/10.1016/j.drudis.2015.07.015
  13. Kanazawa, T., Misawa, K., Misawa, Y., Uehara, T., Fukushima, H., Kusaka, G., Maruta, M., and Carey, T.E. (2015). G-protein-coupled receptors: next generation therapeutic targets in head and neck cancer? Toxins (Basel) 7, 2959-2984. https://doi.org/10.3390/toxins7082959
  14. Luo, J., Zhu, Y., Zhu, M.X., and Hu, H. (2011). Cell-based calcium assay for medium to high throughput screening of TRP channel functions using FlexStation 3. J. Vis. Exp. (54), 3149.
  15. Ly, L.D., Ly, D.D., Nguyen, N.T., Kim, J.H., Yoo, H., Chung, J., Lee, M.S., Cha, S.K., and Park, K.S. (2020). Mitochondrial Ca(2+) uptake relieves palmitate-induced cytosolic Ca(2+) overload in MIN6 cells. Mol. Cells 43, 66-75. https://doi.org/10.14348/molcells.2019.0223
  16. Ma, Q., Ye, L., Liu, H., Shi, Y., and Zhou, N. (2017). An overview of Ca(2+) mobilization assays in GPCR drug discovery. Expert Opin. Drug Discov. 12, 511-523. https://doi.org/10.1080/17460441.2017.1303473
  17. Mank, M. and Griesbeck, O. (2008). Genetically encoded calcium indicators. Chem. Rev. 108, 1550-1564. https://doi.org/10.1021/cr078213v
  18. McCombs, J.E. and Palmer, A.E. (2008). Measuring calcium dynamics in living cells with genetically encodable calcium indicators. Methods 46, 152-159. https://doi.org/10.1016/j.ymeth.2008.09.015
  19. Monteith, G.R. and Bird, G.S. (2005). Techniques: high-throughput measurement of intracellular Ca(2+) -- back to basics. Trends Pharmacol. Sci. 26, 218-223. https://doi.org/10.1016/j.tips.2005.02.002
  20. Nagai, T., Horikawa, K., Saito, K., and Matsuda, T. (2014). Genetically encoded Ca(2+) indicators; expanded affinity range, color hue and compatibility with optogenetics. Front. Mol. Neurosci. 7, 90.
  21. Niedernberg, A., Tunaru, S., Blaukat, A., Harris, B., and Kostenis, E. (2003). Comparative analysis of functional assays for characterization of agonist ligands at G protein-coupled receptors. J. Biomol. Screen. 8, 500-510. https://doi.org/10.1177/1087057103257555
  22. Nowycky, M.C. and Thomas, A.P. (2002). Intracellular calcium signaling. J. Cell Sci. 115, 3715-3716. https://doi.org/10.1242/jcs.00078
  23. Paredes, R.M., Etzler, J.C., Watts, L.T., Zheng, W., and Lechleiter, J.D. (2008). Chemical calcium indicators. Methods 46, 143-151. https://doi.org/10.1016/j.ymeth.2008.09.025
  24. Perez Koldenkova, V. and Nagai, T. (2013). Genetically encoded Ca(2+) indicators: properties and evaluation. Biochim. Biophys. Acta 1833, 1787-1797. https://doi.org/10.1016/j.bbamcr.2013.01.011
  25. Qian, Y., Rancic, V., Wu, J., Ballanyi, K., and Campbell, R.E. (2019). A bioluminescent Ca(2+) indicator based on a topological variant of GCaMP6s. Chembiochem 20, 516-520. https://doi.org/10.1002/cbic.201800255
  26. Rhodes, D.R., Ateeq, B., Cao, Q., Tomlins, S.A., Mehra, R., Laxman, B., Kalyana-Sundaram, S., Lonigro, R.J., Helgeson, B.E., Bhojani, M.S., et al. (2009). AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist. Proc. Natl. Acad. Sci. U. S. A. 106, 10284-10289. https://doi.org/10.1073/pnas.0900351106
  27. Strasser, A., Wittmann, H.J., and Seifert, R. (2017). Binding kinetics and pathways of ligands to GPCRs. Trends Pharmacol. Sci. 38, 717-732. https://doi.org/10.1016/j.tips.2017.05.005
  28. Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M.E., Chalasani, S.H., Petreanu, L., Akerboom, J., McKinney, S.A., Schreiter, E.R., et al. (2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875-881. https://doi.org/10.1038/nmeth.1398
  29. Tsien, R.Y. (1980). New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19, 2396-2404. https://doi.org/10.1021/bi00552a018
  30. Varghese, E., Samuel, S.M., Sadiq, Z., Kubatka, P., Liskova, A., Benacka, J., Pazinka, P., Kruzliak, P., and Busselberg, D. (2019). Anti-cancer agents in proliferation and cell death: the calcium connection. Int. J. Mol. Sci. 20, 3017. https://doi.org/10.3390/ijms20123017
  31. Wacker, D., Stevens, R.C., and Roth, B.L. (2017). How ligands illuminate GPCR molecular pharmacology. Cell 170, 414-427. https://doi.org/10.1016/j.cell.2017.07.009
  32. Wu, N., Nishioka, W.K., Derecki, N.C., and Maher, M.P. (2019). High-throughput-compatible assays using a genetically-encoded calcium indicator. Sci. Rep. 9, 12692. https://doi.org/10.1038/s41598-019-49070-8
  33. Wu, S.C. and O'Connell, T.D. (2015). Nuclear compartmentalization of alpha1-adrenergic receptor signaling in adult cardiac myocytes. J. Cardiovasc. Pharmacol. 65, 91-100. https://doi.org/10.1097/fjc.0000000000000165
  34. Yang, J., Cumberbatch, D., Centanni, S., Shi, S.Q., Winder, D., Webb, D., and Johnson, C.H. (2016). Coupling optogenetic stimulation with NanoLuc-based luminescence (BRET) Ca(++) sensing. Nat. Commun. 7, 13268. https://doi.org/10.1038/ncomms13268
  35. Yang, Y., Liu, N., He, Y., Liu, Y., Ge, L., Zou, L., Song, S., Xiong, W., and Liu, X. (2018). Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP. Nat. Commun. 9, 1504. https://doi.org/10.1038/s41467-018-03719-6
  36. Yasunaga, M., Murotomi, K., Abe, H., Yamazaki, T., Nishii, S., Ohbayashi, T., Oshimura, M., Noguchi, T., Niwa, K., Ohmiya, Y., et al. (2015). Highly sensitive luciferase reporter assay using a potent destabilization sequence of calpain 3. J. Biotechnol. 194, 115-123. https://doi.org/10.1016/j.jbiotec.2014.12.004
  37. Zhang, H.M., Li, L., Papadopoulou, N., Hodgson, G., Evans, E., Galbraith, M., Dear, M., Vougier, S., Saxton, J., and Shaw, P.E. (2008). Mitogen-induced recruitment of ERK and MSK to SRE promoter complexes by ternary complex factor Elk-1. Nucleic Acids Res. 36, 2594-2607. https://doi.org/10.1093/nar/gkn099
  38. Zhu, T., Fang, L.Y., and Xie, X. (2008). Development of a universal high-throughput calcium assay for G-protein- coupled receptors with promiscuous G-protein Galpha15/16. Acta Pharmacol. Sin. 29, 507-516. https://doi.org/10.1111/j.1745-7254.2008.00775.x

Cited by

  1. A Genetically Encoded Bioluminescence Intracellular Nanosensor for Androgen Receptor Activation Monitoring in 3D Cell Models vol.21, pp.3, 2020, https://doi.org/10.3390/s21030893
  2. Regulation of PXR Function by Coactivator and Corepressor Proteins: Ligand Binding Is Just the Beginning vol.10, pp.11, 2021, https://doi.org/10.3390/cells10113137