DOI QR코드

DOI QR Code

Mechanisms of Macromolecular Interactions Mediated by Protein Intrinsic Disorder

  • Hong, Sunghyun (School of Biological Sciences, Seoul National University) ;
  • Choi, Sangmin (School of Biological Sciences, Seoul National University) ;
  • Kim, Ryeonghyeon (School of Biological Sciences, Seoul National University) ;
  • Koh, Junseock (School of Biological Sciences, Seoul National University)
  • Received : 2020.09.11
  • Accepted : 2020.11.17
  • Published : 2020.11.30

Abstract

Intrinsically disordered proteins or regions (IDPs or IDRs) are widespread in the eukaryotic proteome. Although lacking stable three-dimensional structures in the free forms, IDRs perform critical functions in various cellular processes. Accordingly, mutations and altered expression of IDRs are associated with many pathological conditions. Hence, it is of great importance to understand at the molecular level how IDRs interact with their binding partners. In particular, discovering the unique interaction features of IDRs originating from their dynamic nature may reveal uncharted regulatory mechanisms of specific biological processes. Here we discuss the mechanisms of the macromolecular interactions mediated by IDRs and present the relevant cellular processes including transcription, cell cycle progression, signaling, and nucleocytoplasmic transport. Of special interest is the multivalent binding nature of IDRs driving assembly of multicomponent macromolecular complexes. Integrating the previous theoretical and experimental investigations, we suggest that such IDR-driven multiprotein complexes can function as versatile allosteric switches to process diverse cellular signals. Finally, we discuss the future challenges and potential medical applications of the IDR research.

Keywords

References

  1. Anfinsen, C.B., Haber, E., Sela, M., and White, F.H., Jr. (1961). The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. U. S. A. 47, 1309-1314. https://doi.org/10.1073/pnas.47.9.1309
  2. Babu, M.M., van der Lee, R., de Groot, N.S., and Gsponer, J. (2011). Intrinsically disordered proteins: regulation and disease. Curr. Opin. Struct. Biol. 21, 432-440. https://doi.org/10.1016/j.sbi.2011.03.011
  3. Baker, J.M., Hudson, R.P., Kanelis, V., Choy, W.Y., Thibodeau, P.H., Thomas, P.J., and Forman-Kay, J.D. (2007). CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat. Struct. Mol. Biol. 14, 738-745. https://doi.org/10.1038/nsmb1278
  4. Blus, B.J., Koh, J., Krolak, A., Seo, H.S., Coutavas, E., and Blobel, G. (2019). Allosteric modulation of nucleoporin assemblies by intrinsically disordered regions. Sci. Adv. 5, eaax1836. https://doi.org/10.1126/sciadv.aax1836
  5. Borcherds, W., Theillet, F.X., Katzer, A., Finzel, A., Mishall, K.M., Powell, A.T., Wu, H., Manieri, W., Dieterich, C., Selenko, P., et al. (2014). Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells. Nat. Chem. Biol. 10, 1000-1002. https://doi.org/10.1038/nchembio.1668
  6. Brzovic, P.S., Heikaus, C.C., Kisselev, L., Vernon, R., Herbig, E., Pacheco, D., Warfield, L., Littlefield, P., Baker, D., Klevit, R.E., et al. (2011). The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex. Mol. Cell 44, 942-953. https://doi.org/10.1016/j.molcel.2011.11.008
  7. Changeux, J.P. (2013). 50 years of allosteric interactions: the twists and turns of the models. Nat. Rev. Mol. Cell Biol. 14, 819-829. https://doi.org/10.1038/nrm3695
  8. Cheng, Y., LeGall, T., Oldfield, C.J., Mueller, J.P., Van, Y.Y., Romero, P., Cortese, M.S., Uversky, V.N., and Dunker, A.K. (2006). Rational drug design via intrinsically disordered protein. Trends Biotechnol. 24, 435-442. https://doi.org/10.1016/j.tibtech.2006.07.005
  9. Chothia, C. (1974). Hydrophobic bonding and accessible surface area in proteins. Nature 248, 338-339. https://doi.org/10.1038/248338a0
  10. Cortese, M.S., Uversky, V.N., and Dunker, A.K. (2008). Intrinsic disorder in scaffold proteins: getting more from less. Prog. Biophys. Mol. Biol. 98, 85-106. https://doi.org/10.1016/j.pbiomolbio.2008.05.007
  11. Csizmok, V., Follis, A.V., Kriwacki, R.W., and Forman-Kay, J.D. (2016). Dynamic protein interaction networks and new structural paradigms in signaling. Chem. Rev. 116, 6424-6462. https://doi.org/10.1021/acs.chemrev.5b00548
  12. Cumberworth, A., Lamour, G., Babu, M.M., and Gsponer, J. (2013). Promiscuity as a functional trait: intrinsically disordered regions as central players of interactomes. Biochem. J. 454, 361-369. https://doi.org/10.1042/BJ20130545
  13. Daughdrill, G.W., Chadsey, M.S., Karlinsey, J.E., Hughes, K.T., and Dahlquist, F.W. (1997). The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target, sigma 28. Nat. Struct. Biol. 4, 285-291. https://doi.org/10.1038/nsb0497-285
  14. Davey, N.E., Van Roey, K., Weatheritt, R.J., Toedt, G., Uyar, B., Altenberg, B., Budd, A., Diella, F., Dinkel, H., and Gibson, T.J. (2012). Attributes of short linear motifs. Mol. Biosyst. 8, 268-281. https://doi.org/10.1039/c1mb05231d
  15. Dill, K.A. and Chan, H.S. (1997). From Levinthal to pathways to funnels. Nat. Struct. Biol. 4, 10-19. https://doi.org/10.1038/nsb0197-10
  16. Dosztanyi, Z., Chen, J., Dunker, A.K., Simon, I., and Tompa, P. (2006). Disorder and sequence repeats in hub proteins and their implications for network evolution. J. Proteome Res. 5, 2985-2995. https://doi.org/10.1021/pr060171o
  17. Dunker, A.K., Brown, C.J., Lawson, J.D., Iakoucheva, L.M., and Obradovic, Z. (2002). Intrinsic disorder and protein function. Biochemistry 41, 6573-6582. https://doi.org/10.1021/bi012159+
  18. Dunker, A.K., Cortese, M.S., Romero, P., Iakoucheva, L.M., and Uversky, V.N. (2005). Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J. 272, 5129-5148. https://doi.org/10.1111/j.1742-4658.2005.04948.x
  19. Dyson, H.J. and Wright, P.E. (2002). Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12, 54-60. https://doi.org/10.1016/S0959-440X(02)00289-0
  20. Dyson, H.J. and Wright, P.E. (2005). Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197-208. https://doi.org/10.1038/nrm1589
  21. Dyson, H.J. and Wright, P.E. (2016). Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding protein (CBP) and p300. J. Biol. Chem. 291, 6714-6722. https://doi.org/10.1074/jbc.R115.692020
  22. Ferrari, R., Pellegrini, M., Horwitz, G.A., Xie, W., Berk, A.J., and Kurdistani, S.K. (2008). Epigenetic reprogramming by adenovirus e1a. Science 321, 1086-1088. https://doi.org/10.1126/science.1155546
  23. Ferreon, A.C., Ferreon, J.C., Wright, P.E., and Deniz, A.A. (2013). Modulation of allostery by protein intrinsic disorder. Nature 498, 390-394. https://doi.org/10.1038/nature12294
  24. Fisher, C.K. and Stultz, C.M. (2011). Constructing ensembles for intrinsically disordered proteins. Curr. Opin. Struct. Biol. 21, 426-431. https://doi.org/10.1016/j.sbi.2011.04.001
  25. Follis, A.V., Hammoudeh, D.I., Wang, H., Prochownik, E.V., and Metallo, S.J. (2008). Structural rationale for the coupled binding and unfolding of the c-Myc oncoprotein by small molecules. Chem. Biol. 15, 1149-1155. https://doi.org/10.1016/j.chembiol.2008.09.011
  26. Fung, H.Y.J., Birol, M., and Rhoades, E. (2018). IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Curr. Opin. Struct. Biol. 49, 36-43. https://doi.org/10.1016/j.sbi.2017.12.007
  27. Fuxreiter, M. (2018). Fuzziness in protein interactions-a historical perspective. J. Mol. Biol. 430, 2278-2287. https://doi.org/10.1016/j.jmb.2018.02.015
  28. Fuxreiter, M., Simon, I., Friedrich, P., and Tompa, P. (2004). Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J. Mol. Biol. 338, 1015-1026. https://doi.org/10.1016/j.jmb.2004.03.017
  29. Fuxreiter, M., Toth-Petroczy, A., Kraut, D.A., Matouschek, A., Lim, R.Y., Xue, B., Kurgan, L., and Uversky, V.N. (2014). Disordered proteinaceous machines. Chem. Rev. 114, 6806-6843. https://doi.org/10.1021/cr4007329
  30. Galea, C.A., Wang, Y., Sivakolundu, S.G., and Kriwacki, R.W. (2008). Regulation of cell division by intrinsically unstructured proteins: intrinsic flexibility, modularity, and signaling conduits. Biochemistry 47, 7598-7609. https://doi.org/10.1021/bi8006803
  31. Garcia-Pino, A., Balasubramanian, S., Wyns, L., Gazit, E., De Greve, H., Magnuson, R.D., Charlier, D., van Nuland, N.A., and Loris, R. (2010). Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell 142, 101-111. https://doi.org/10.1016/j.cell.2010.05.039
  32. Grimmler, M., Wang, Y., Mund, T., Cilensek, Z., Keidel, E.M., Waddell, M.B., Jakel, H., Kullmann, M., Kriwacki, R.W., and Hengst, L. (2007). Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 128, 269-280. https://doi.org/10.1016/j.cell.2006.11.047
  33. Gunasekaran, K., Tsai, C.J., Kumar, S., Zanuy, D., and Nussinov, R. (2003). Extended disordered proteins: targeting function with less scaffold. Trends Biochem. Sci. 28, 81-85. https://doi.org/10.1016/S0968-0004(03)00003-3
  34. Hammoudeh, D.I., Follis, A.V., Prochownik, E.V., and Metallo, S.J. (2009). Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. J. Am. Chem. Soc. 131, 7390-7401. https://doi.org/10.1021/ja900616b
  35. Harvey, S.R., Porrini, M., Stachl, C., MacMillan, D., Zinzalla, G., and Barran, P.E. (2012). Small-molecule inhibition of c-MYC:MAX leucine zipper formation is revealed by ion mobility mass spectrometry. J. Am. Chem. Soc. 134, 19384-19392. https://doi.org/10.1021/ja306519h
  36. Haynes, C., Oldfield, C.J., Ji, F., Klitgord, N., Cusick, M.E., Radivojac, P., Uversky, V.N., Vidal, M., and Iakoucheva, L.M. (2006). Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput. Biol. 2, e100. https://doi.org/10.1371/journal.pcbi.0020100
  37. Hegyi, H., Schad, E., and Tompa, P. (2007). Structural disorder promotes assembly of protein complexes. BMC Struct. Biol. 7, 65. https://doi.org/10.1186/1472-6807-7-65
  38. Hilser, V.J. and Thompson, E.B. (2007). Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc. Natl. Acad. Sci. U. S. A. 104, 8311-8315. https://doi.org/10.1073/pnas.0700329104
  39. Horwitz, G.A., Zhang, K., McBrian, M.A., Grunstein, M., Kurdistani, S.K., and Berk, A.J. (2008). Adenovirus small e1a alters global patterns of histone modification. Science 321, 1084-1085. https://doi.org/10.1126/science.1155544
  40. Iakoucheva, L.M., Brown, C.J., Lawson, J.D., Obradovic, Z., and Dunker, A.K. (2002). Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol. 323, 573-584. https://doi.org/10.1016/S0022-2836(02)00969-5
  41. Joshi, P. and Vendruscolo, M. (2015). Druggability of intrinsically disordered proteins. Adv. Exp. Med. Biol. 870, 383-400. https://doi.org/10.1007/978-3-319-20164-1_13
  42. Kendrew, J.C., Bodo, G., Dintzis, H.M., Parrish, R.G., Wyckoff, H., and Phillips, D.C. (1958). A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181, 662-666. https://doi.org/10.1038/181662a0
  43. Koh, J. and Blobel, G. (2015). Allosteric regulation in gating the central channel of the nuclear pore complex. Cell 161, 1361-1373. https://doi.org/10.1016/j.cell.2015.05.013
  44. Krishnan, N., Koveal, D., Miller, D.H., Xue, B., Akshinthala, S.D., Kragelj, J., Jensen, M.R., Gauss, C.M., Page, R., Blackledge, M., et al. (2014). Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol. 10, 558-566. https://doi.org/10.1038/nchembio.1528
  45. Kriwacki, R.W., Hengst, L., Tennant, L., Reed, S.I., and Wright, P.E. (1996). Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc. Natl. Acad. Sci. U. S. A. 93, 11504-11509. https://doi.org/10.1073/pnas.93.21.11504
  46. Lacy, E.R., Filippov, I., Lewis, W.S., Otieno, S., Xiao, L., Weiss, S., Hengst, L., and Kriwacki, R.W. (2004). p27 binds cyclin-CDK complexes through a sequential mechanism involving binding-induced protein folding. Nat. Struct. Mol. Biol. 11, 358-364. https://doi.org/10.1038/nsmb746
  47. Li, J., White, J.T., Saavedra, H., Wrabl, J.O., Motlagh, H.N., Liu, K., Sowers, J., Schroer, T.A., Thompson, E.B., and Hilser, V.J. (2017). Genetically tunable frustration controls allostery in an intrinsically disordered transcription factor. Elife 6, e30688. https://doi.org/10.7554/elife.30688
  48. Liu, J., Perumal, N.B., Oldfield, C.J., Su, E.W., Uversky, V.N., and Dunker, A.K. (2006). Intrinsic disorder in transcription factors. Biochemistry 45, 6873-6888. https://doi.org/10.1021/bi0602718
  49. Malik, S. and Roeder, R.G. (2010). The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat. Rev. Genet. 11, 761-772. https://doi.org/10.1038/nrg2901
  50. Metallo, S.J. (2010). Intrinsically disordered proteins are potential drug targets. Curr. Opin. Chem. Biol. 14, 481-488. https://doi.org/10.1016/j.cbpa.2010.06.169
  51. Mittag, T., Marsh, J., Grishaev, A., Orlicky, S., Lin, H., Sicheri, F., Tyers, M., and Forman-Kay, J.D. (2010). Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase. Structure 18, 494-506. https://doi.org/10.1016/j.str.2010.01.020
  52. Mohan, A., Oldfield, C.J., Radivojac, P., Vacic, V., Cortese, M.S., Dunker, A.K., and Uversky, V.N. (2006). Analysis of molecular recognition features (MoRFs). J. Mol. Biol. 362, 1043-1059. https://doi.org/10.1016/j.jmb.2006.07.087
  53. Monod, J., Wyman, J., and Changeux, J.P. (1965). On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88-118. https://doi.org/10.1016/s0022-2836(65)80285-6
  54. Motlagh, H.N., Wrabl, J.O., Li, J., and Hilser, V.J. (2014). The ensemble nature of allostery. Nature 508, 331-339. https://doi.org/10.1038/nature13001
  55. Mukhopadhyay, S., Krishnan, R., Lemke, E.A., Lindquist, S., and Deniz, A.A. (2007). A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. Proc. Natl. Acad. Sci. U. S. A. 104, 2649-2654. https://doi.org/10.1073/pnas.0611503104
  56. Neira, J.L., Bintz, J., Arruebo, M., Rizzuti, B., Bonacci, T., Vega, S., Lanas, A., Velazquez-Campoy, A., Iovanna, J.L., and Abian, O. (2017). Identification of a drug targeting an intrinsically disordered protein involved in pancreatic adenocarcinoma. Sci. Rep. 7, 39732. https://doi.org/10.1038/srep39732
  57. Noutsou, M., Duarte, A.M., Anvarian, Z., Didenko, T., Minde, D.P., Kuper, I., de Ridder, I., Oikonomou, C., Friedler, A., Boelens, R., et al. (2011). Critical scaffolding regions of the tumor suppressor Axin1 are natively unfolded. J. Mol. Biol. 405, 773-786. https://doi.org/10.1016/j.jmb.2010.11.013
  58. Oates, M.E., Romero, P., Ishida, T., Ghalwash, M., Mizianty, M.J., Xue, B., Dosztanyi, Z., Uversky, V.N., Obradovic, Z., Kurgan, L., et al. (2013). D(2) P(2): database of disordered protein predictions. Nucleic Acids Res. 41, D508-D516. https://doi.org/10.1093/nar/gks1226
  59. Oldfield, C.J., Cheng, Y., Cortese, M.S., Romero, P., Uversky, V.N., and Dunker, A.K. (2005). Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44, 12454-12470. https://doi.org/10.1021/bi050736e
  60. Onuchic, J.N., Wolynes, P.G., Luthey-Schulten, Z., and Socci, N.D. (1995). Toward an outline of the topography of a realistic protein-folding funnel. Proc. Natl. Acad. Sci. U. S. A. 92, 3626-3630. https://doi.org/10.1073/pnas.92.8.3626
  61. Papoian, G.A. (2008). Proteins with weakly funneled energy landscapes challenge the classical structure-function paradigm. Proc. Natl. Acad. Sci. U. S. A. 105, 14237-14238. https://doi.org/10.1073/pnas.0807977105
  62. Pelka, P., Ablack, J.N., Fonseca, G.J., Yousef, A.F., and Mymryk, J.S. (2008). Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes. J. Virol. 82, 7252-7263. https://doi.org/10.1128/JVI.00104-08
  63. Perutz, M.F., Rossmann, M.G., Cullis, A.F., Muirhead, H., Will, G., and North, A.C. (1960). Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature 185, 416-422. https://doi.org/10.1038/185416a0
  64. Praefcke, G.J., Ford, M.G., Schmid, E.M., Olesen, L.E., Gallop, J.L., Peak-Chew, S.Y., Vallis, Y., Babu, M.M., Mills, I.G., and McMahon, H.T. (2004). Evolving nature of the AP2 alpha-appendage hub during clathrin-coated vesicle endocytosis. EMBO J. 23, 4371-4383. https://doi.org/10.1038/sj.emboj.7600445
  65. Radhakrishnan, I., Perez-Alvarado, G.C., Parker, D., Dyson, H.J., Montminy, M.R., and Wright, P.E. (1997). Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91, 741-752. https://doi.org/10.1016/S0092-8674(00)80463-8
  66. Radivojac, P., Iakoucheva, L.M., Oldfield, C.J., Obradovic, Z., Uversky, V.N., and Dunker, A.K. (2007). Intrinsic disorder and functional proteomics. Biophys. J. 92, 1439-1456. https://doi.org/10.1529/biophysj.106.094045
  67. Romero, P., Obradovic, Z., Kissinger, C.R., Villafranca, J.E., Garner, E., Guilliot, S., and Dunker, A.K. (1998). Thousands of proteins likely to have long disordered regions. Pac. Symp. Biocomput. 437-448.
  68. Spolar, R.S. and Record, M.T., Jr. (1994). Coupling of local folding to sitespecific binding of proteins to DNA. Science 263, 777-784. https://doi.org/10.1126/science.8303294
  69. Sugase, K., Dyson, H.J., and Wright, P.E. (2007). Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021-1025. https://doi.org/10.1038/nature05858
  70. Tompa, P. (2002). Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 527-533. https://doi.org/10.1016/S0968-0004(02)02169-2
  71. Tompa, P., Davey, N.E., Gibson, T.J., and Babu, M.M. (2014). A million peptide motifs for the molecular biologist. Mol. Cell 55, 161-169. https://doi.org/10.1016/j.molcel.2014.05.032
  72. Tompa, P. and Fuxreiter, M. (2008). Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem. Sci. 33, 2-8. https://doi.org/10.1016/j.tibs.2007.10.003
  73. Tsytlonok, M., Sanabria, H., Wang, Y., Felekyan, S., Hemmen, K., Phillips, A.H., Yun, M.K., Waddell, M.B., Park, C.G., Vaithiyalingam, S., et al. (2019). Dynamic anticipation by Cdk2/Cyclin A-bound p27 mediates signal integration in cell cycle regulation. Nat. Commun. 10, 1676. https://doi.org/10.1038/s41467-019-09446-w
  74. Tuttle, L.M., Pacheco, D., Warfield, L., Luo, J., Ranish, J., Hahn, S., and Klevit, R.E. (2018). Gcn4-mediator specificity is mediated by a large and dynamic fuzzy protein-protein complex. Cell Rep. 22, 3251-3264. https://doi.org/10.1016/j.celrep.2018.02.097
  75. Uversky, V.N. (2002). Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 11, 739-756. https://doi.org/10.1110/ps.4210102
  76. Uversky, V.N. (2018). Intrinsic disorder, protein-protein interactions, and disease. Adv. Protein Chem. Struct. Biol. 110, 85-121. https://doi.org/10.1016/bs.apcsb.2017.06.005
  77. Uversky, V.N., Gillespie, J.R., and Fink, A.L. (2000). Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins 41, 415-427. https://doi.org/10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7
  78. Uversky, V.N., Oldfield, C.J., and Dunker, A.K. (2008). Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys. 37, 215-246. https://doi.org/10.1146/annurev.biophys.37.032807.125924
  79. van der Lee, R., Buljan, M., Lang, B., Weatheritt, R.J., Daughdrill, G.W., Dunker, A.K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D.T., et al. (2014). Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589-6631. https://doi.org/10.1021/cr400525m
  80. Vavouri, T., Semple, J.I., Garcia-Verdugo, R., and Lehner, B. (2009). Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 138, 198-208. https://doi.org/10.1016/j.cell.2009.04.029
  81. Ward, J.J., Sodhi, J.S., McGuffin, L.J., Buxton, B.F., and Jones, D.T. (2004). Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337, 635-645. https://doi.org/10.1016/j.jmb.2004.02.002
  82. Warfield, L., Tuttle, L.M., Pacheco, D., Klevit, R.E., and Hahn, S. (2014). A sequence-specific transcription activator motif and powerful synthetic variants that bind Mediator using a fuzzy protein interface. Proc. Natl. Acad. Sci. U. S. A. 111, E3506-E3513. https://doi.org/10.1073/pnas.1412088111
  83. Weathers, E.A., Paulaitis, M.E., Woolf, T.B., and Hoh, J.H. (2004). Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein. FEBS Lett. 576, 348-352. https://doi.org/10.1016/j.febslet.2004.09.036
  84. Wei, G., Xi, W., Nussinov, R., and Ma, B. (2016). Protein ensembles: how does nature harness thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in the cell. Chem. Rev. 116, 6516-6551. https://doi.org/10.1021/acs.chemrev.5b00562
  85. Wootton, J.C. (1994). Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput. Chem. 18, 269-285. https://doi.org/10.1016/0097-8485(94)85023-2
  86. Wright, P.E. and Dyson, H.J. (1999). Intrinsically unstructured proteins: reassessing the protein structure-function paradigm. J. Mol. Biol. 293, 321-331. https://doi.org/10.1006/jmbi.1999.3110
  87. Wright, P.E. and Dyson, H.J. (2009). Linking folding and binding. Curr. Opin. Struct. Biol. 19, 31-38. https://doi.org/10.1016/j.sbi.2008.12.003
  88. Wright, P.E. and Dyson, H.J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18-29. https://doi.org/10.1038/nrm3920
  89. Wu, H. and Fuxreiter, M. (2016). The structure and dynamics of higher-order assemblies: amyloids, signalosomes, and granules. Cell 165, 1055-1066. https://doi.org/10.1016/j.cell.2016.05.004
  90. Xie, H., Vucetic, S., Iakoucheva, L.M., Oldfield, C.J., Dunker, A.K., Uversky, V.N., and Obradovic, Z. (2007). Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 6, 1882-1898. https://doi.org/10.1021/pr060392u
  91. Xue, B., Romero, P.R., Noutsou, M., Maurice, M.M., Rudiger, S.G., William, A.M., Jr., Mizianty, M.J., Kurgan, L., Uversky, V.N., and Dunker, A.K. (2013). Stochastic machines as a colocalization mechanism for scaffold protein function. FEBS Lett. 587, 1587-1591. https://doi.org/10.1016/j.febslet.2013.04.006
  92. Zhang, Y., Qiu, W.J., Liu, D.X., Neo, S.Y., He, X., and Lin, S.C. (2001). Differential molecular assemblies underlie the dual function of Axin in modulating the WNT and JNK pathways. J. Biol. Chem. 276, 32152-32159. https://doi.org/10.1074/jbc.M104451200
  93. Zhou, H.X. (2012). Intrinsic disorder: signaling via highly specific but short-lived association. Trends Biochem. Sci. 37, 43-48. https://doi.org/10.1016/j.tibs.2011.11.002

Cited by

  1. Integrative Multi-Omics Approaches in Cancer Research: From Biological Networks to Clinical Subtypes vol.44, pp.7, 2020, https://doi.org/10.14348/molcells.2021.0042
  2. Thermodynamic Models for Assembly of Intrinsically Disordered Protein Hubs with Multiple Interaction Partners vol.143, pp.32, 2020, https://doi.org/10.1021/jacs.1c00811