References
- Anfinsen, C.B., Haber, E., Sela, M., and White, F.H., Jr. (1961). The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. U. S. A. 47, 1309-1314. https://doi.org/10.1073/pnas.47.9.1309
- Babu, M.M., van der Lee, R., de Groot, N.S., and Gsponer, J. (2011). Intrinsically disordered proteins: regulation and disease. Curr. Opin. Struct. Biol. 21, 432-440. https://doi.org/10.1016/j.sbi.2011.03.011
- Baker, J.M., Hudson, R.P., Kanelis, V., Choy, W.Y., Thibodeau, P.H., Thomas, P.J., and Forman-Kay, J.D. (2007). CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat. Struct. Mol. Biol. 14, 738-745. https://doi.org/10.1038/nsmb1278
- Blus, B.J., Koh, J., Krolak, A., Seo, H.S., Coutavas, E., and Blobel, G. (2019). Allosteric modulation of nucleoporin assemblies by intrinsically disordered regions. Sci. Adv. 5, eaax1836. https://doi.org/10.1126/sciadv.aax1836
- Borcherds, W., Theillet, F.X., Katzer, A., Finzel, A., Mishall, K.M., Powell, A.T., Wu, H., Manieri, W., Dieterich, C., Selenko, P., et al. (2014). Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells. Nat. Chem. Biol. 10, 1000-1002. https://doi.org/10.1038/nchembio.1668
- Brzovic, P.S., Heikaus, C.C., Kisselev, L., Vernon, R., Herbig, E., Pacheco, D., Warfield, L., Littlefield, P., Baker, D., Klevit, R.E., et al. (2011). The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex. Mol. Cell 44, 942-953. https://doi.org/10.1016/j.molcel.2011.11.008
- Changeux, J.P. (2013). 50 years of allosteric interactions: the twists and turns of the models. Nat. Rev. Mol. Cell Biol. 14, 819-829. https://doi.org/10.1038/nrm3695
- Cheng, Y., LeGall, T., Oldfield, C.J., Mueller, J.P., Van, Y.Y., Romero, P., Cortese, M.S., Uversky, V.N., and Dunker, A.K. (2006). Rational drug design via intrinsically disordered protein. Trends Biotechnol. 24, 435-442. https://doi.org/10.1016/j.tibtech.2006.07.005
- Chothia, C. (1974). Hydrophobic bonding and accessible surface area in proteins. Nature 248, 338-339. https://doi.org/10.1038/248338a0
- Cortese, M.S., Uversky, V.N., and Dunker, A.K. (2008). Intrinsic disorder in scaffold proteins: getting more from less. Prog. Biophys. Mol. Biol. 98, 85-106. https://doi.org/10.1016/j.pbiomolbio.2008.05.007
- Csizmok, V., Follis, A.V., Kriwacki, R.W., and Forman-Kay, J.D. (2016). Dynamic protein interaction networks and new structural paradigms in signaling. Chem. Rev. 116, 6424-6462. https://doi.org/10.1021/acs.chemrev.5b00548
- Cumberworth, A., Lamour, G., Babu, M.M., and Gsponer, J. (2013). Promiscuity as a functional trait: intrinsically disordered regions as central players of interactomes. Biochem. J. 454, 361-369. https://doi.org/10.1042/BJ20130545
- Daughdrill, G.W., Chadsey, M.S., Karlinsey, J.E., Hughes, K.T., and Dahlquist, F.W. (1997). The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target, sigma 28. Nat. Struct. Biol. 4, 285-291. https://doi.org/10.1038/nsb0497-285
- Davey, N.E., Van Roey, K., Weatheritt, R.J., Toedt, G., Uyar, B., Altenberg, B., Budd, A., Diella, F., Dinkel, H., and Gibson, T.J. (2012). Attributes of short linear motifs. Mol. Biosyst. 8, 268-281. https://doi.org/10.1039/c1mb05231d
- Dill, K.A. and Chan, H.S. (1997). From Levinthal to pathways to funnels. Nat. Struct. Biol. 4, 10-19. https://doi.org/10.1038/nsb0197-10
- Dosztanyi, Z., Chen, J., Dunker, A.K., Simon, I., and Tompa, P. (2006). Disorder and sequence repeats in hub proteins and their implications for network evolution. J. Proteome Res. 5, 2985-2995. https://doi.org/10.1021/pr060171o
- Dunker, A.K., Brown, C.J., Lawson, J.D., Iakoucheva, L.M., and Obradovic, Z. (2002). Intrinsic disorder and protein function. Biochemistry 41, 6573-6582. https://doi.org/10.1021/bi012159+
- Dunker, A.K., Cortese, M.S., Romero, P., Iakoucheva, L.M., and Uversky, V.N. (2005). Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J. 272, 5129-5148. https://doi.org/10.1111/j.1742-4658.2005.04948.x
- Dyson, H.J. and Wright, P.E. (2002). Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12, 54-60. https://doi.org/10.1016/S0959-440X(02)00289-0
- Dyson, H.J. and Wright, P.E. (2005). Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197-208. https://doi.org/10.1038/nrm1589
- Dyson, H.J. and Wright, P.E. (2016). Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding protein (CBP) and p300. J. Biol. Chem. 291, 6714-6722. https://doi.org/10.1074/jbc.R115.692020
- Ferrari, R., Pellegrini, M., Horwitz, G.A., Xie, W., Berk, A.J., and Kurdistani, S.K. (2008). Epigenetic reprogramming by adenovirus e1a. Science 321, 1086-1088. https://doi.org/10.1126/science.1155546
- Ferreon, A.C., Ferreon, J.C., Wright, P.E., and Deniz, A.A. (2013). Modulation of allostery by protein intrinsic disorder. Nature 498, 390-394. https://doi.org/10.1038/nature12294
- Fisher, C.K. and Stultz, C.M. (2011). Constructing ensembles for intrinsically disordered proteins. Curr. Opin. Struct. Biol. 21, 426-431. https://doi.org/10.1016/j.sbi.2011.04.001
- Follis, A.V., Hammoudeh, D.I., Wang, H., Prochownik, E.V., and Metallo, S.J. (2008). Structural rationale for the coupled binding and unfolding of the c-Myc oncoprotein by small molecules. Chem. Biol. 15, 1149-1155. https://doi.org/10.1016/j.chembiol.2008.09.011
- Fung, H.Y.J., Birol, M., and Rhoades, E. (2018). IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Curr. Opin. Struct. Biol. 49, 36-43. https://doi.org/10.1016/j.sbi.2017.12.007
- Fuxreiter, M. (2018). Fuzziness in protein interactions-a historical perspective. J. Mol. Biol. 430, 2278-2287. https://doi.org/10.1016/j.jmb.2018.02.015
- Fuxreiter, M., Simon, I., Friedrich, P., and Tompa, P. (2004). Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J. Mol. Biol. 338, 1015-1026. https://doi.org/10.1016/j.jmb.2004.03.017
- Fuxreiter, M., Toth-Petroczy, A., Kraut, D.A., Matouschek, A., Lim, R.Y., Xue, B., Kurgan, L., and Uversky, V.N. (2014). Disordered proteinaceous machines. Chem. Rev. 114, 6806-6843. https://doi.org/10.1021/cr4007329
- Galea, C.A., Wang, Y., Sivakolundu, S.G., and Kriwacki, R.W. (2008). Regulation of cell division by intrinsically unstructured proteins: intrinsic flexibility, modularity, and signaling conduits. Biochemistry 47, 7598-7609. https://doi.org/10.1021/bi8006803
- Garcia-Pino, A., Balasubramanian, S., Wyns, L., Gazit, E., De Greve, H., Magnuson, R.D., Charlier, D., van Nuland, N.A., and Loris, R. (2010). Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell 142, 101-111. https://doi.org/10.1016/j.cell.2010.05.039
- Grimmler, M., Wang, Y., Mund, T., Cilensek, Z., Keidel, E.M., Waddell, M.B., Jakel, H., Kullmann, M., Kriwacki, R.W., and Hengst, L. (2007). Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 128, 269-280. https://doi.org/10.1016/j.cell.2006.11.047
- Gunasekaran, K., Tsai, C.J., Kumar, S., Zanuy, D., and Nussinov, R. (2003). Extended disordered proteins: targeting function with less scaffold. Trends Biochem. Sci. 28, 81-85. https://doi.org/10.1016/S0968-0004(03)00003-3
- Hammoudeh, D.I., Follis, A.V., Prochownik, E.V., and Metallo, S.J. (2009). Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. J. Am. Chem. Soc. 131, 7390-7401. https://doi.org/10.1021/ja900616b
- Harvey, S.R., Porrini, M., Stachl, C., MacMillan, D., Zinzalla, G., and Barran, P.E. (2012). Small-molecule inhibition of c-MYC:MAX leucine zipper formation is revealed by ion mobility mass spectrometry. J. Am. Chem. Soc. 134, 19384-19392. https://doi.org/10.1021/ja306519h
- Haynes, C., Oldfield, C.J., Ji, F., Klitgord, N., Cusick, M.E., Radivojac, P., Uversky, V.N., Vidal, M., and Iakoucheva, L.M. (2006). Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput. Biol. 2, e100. https://doi.org/10.1371/journal.pcbi.0020100
- Hegyi, H., Schad, E., and Tompa, P. (2007). Structural disorder promotes assembly of protein complexes. BMC Struct. Biol. 7, 65. https://doi.org/10.1186/1472-6807-7-65
- Hilser, V.J. and Thompson, E.B. (2007). Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc. Natl. Acad. Sci. U. S. A. 104, 8311-8315. https://doi.org/10.1073/pnas.0700329104
- Horwitz, G.A., Zhang, K., McBrian, M.A., Grunstein, M., Kurdistani, S.K., and Berk, A.J. (2008). Adenovirus small e1a alters global patterns of histone modification. Science 321, 1084-1085. https://doi.org/10.1126/science.1155544
- Iakoucheva, L.M., Brown, C.J., Lawson, J.D., Obradovic, Z., and Dunker, A.K. (2002). Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol. 323, 573-584. https://doi.org/10.1016/S0022-2836(02)00969-5
- Joshi, P. and Vendruscolo, M. (2015). Druggability of intrinsically disordered proteins. Adv. Exp. Med. Biol. 870, 383-400. https://doi.org/10.1007/978-3-319-20164-1_13
- Kendrew, J.C., Bodo, G., Dintzis, H.M., Parrish, R.G., Wyckoff, H., and Phillips, D.C. (1958). A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181, 662-666. https://doi.org/10.1038/181662a0
- Koh, J. and Blobel, G. (2015). Allosteric regulation in gating the central channel of the nuclear pore complex. Cell 161, 1361-1373. https://doi.org/10.1016/j.cell.2015.05.013
- Krishnan, N., Koveal, D., Miller, D.H., Xue, B., Akshinthala, S.D., Kragelj, J., Jensen, M.R., Gauss, C.M., Page, R., Blackledge, M., et al. (2014). Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol. 10, 558-566. https://doi.org/10.1038/nchembio.1528
- Kriwacki, R.W., Hengst, L., Tennant, L., Reed, S.I., and Wright, P.E. (1996). Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc. Natl. Acad. Sci. U. S. A. 93, 11504-11509. https://doi.org/10.1073/pnas.93.21.11504
- Lacy, E.R., Filippov, I., Lewis, W.S., Otieno, S., Xiao, L., Weiss, S., Hengst, L., and Kriwacki, R.W. (2004). p27 binds cyclin-CDK complexes through a sequential mechanism involving binding-induced protein folding. Nat. Struct. Mol. Biol. 11, 358-364. https://doi.org/10.1038/nsmb746
- Li, J., White, J.T., Saavedra, H., Wrabl, J.O., Motlagh, H.N., Liu, K., Sowers, J., Schroer, T.A., Thompson, E.B., and Hilser, V.J. (2017). Genetically tunable frustration controls allostery in an intrinsically disordered transcription factor. Elife 6, e30688. https://doi.org/10.7554/elife.30688
- Liu, J., Perumal, N.B., Oldfield, C.J., Su, E.W., Uversky, V.N., and Dunker, A.K. (2006). Intrinsic disorder in transcription factors. Biochemistry 45, 6873-6888. https://doi.org/10.1021/bi0602718
- Malik, S. and Roeder, R.G. (2010). The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat. Rev. Genet. 11, 761-772. https://doi.org/10.1038/nrg2901
- Metallo, S.J. (2010). Intrinsically disordered proteins are potential drug targets. Curr. Opin. Chem. Biol. 14, 481-488. https://doi.org/10.1016/j.cbpa.2010.06.169
- Mittag, T., Marsh, J., Grishaev, A., Orlicky, S., Lin, H., Sicheri, F., Tyers, M., and Forman-Kay, J.D. (2010). Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase. Structure 18, 494-506. https://doi.org/10.1016/j.str.2010.01.020
- Mohan, A., Oldfield, C.J., Radivojac, P., Vacic, V., Cortese, M.S., Dunker, A.K., and Uversky, V.N. (2006). Analysis of molecular recognition features (MoRFs). J. Mol. Biol. 362, 1043-1059. https://doi.org/10.1016/j.jmb.2006.07.087
- Monod, J., Wyman, J., and Changeux, J.P. (1965). On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88-118. https://doi.org/10.1016/s0022-2836(65)80285-6
- Motlagh, H.N., Wrabl, J.O., Li, J., and Hilser, V.J. (2014). The ensemble nature of allostery. Nature 508, 331-339. https://doi.org/10.1038/nature13001
- Mukhopadhyay, S., Krishnan, R., Lemke, E.A., Lindquist, S., and Deniz, A.A. (2007). A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. Proc. Natl. Acad. Sci. U. S. A. 104, 2649-2654. https://doi.org/10.1073/pnas.0611503104
- Neira, J.L., Bintz, J., Arruebo, M., Rizzuti, B., Bonacci, T., Vega, S., Lanas, A., Velazquez-Campoy, A., Iovanna, J.L., and Abian, O. (2017). Identification of a drug targeting an intrinsically disordered protein involved in pancreatic adenocarcinoma. Sci. Rep. 7, 39732. https://doi.org/10.1038/srep39732
- Noutsou, M., Duarte, A.M., Anvarian, Z., Didenko, T., Minde, D.P., Kuper, I., de Ridder, I., Oikonomou, C., Friedler, A., Boelens, R., et al. (2011). Critical scaffolding regions of the tumor suppressor Axin1 are natively unfolded. J. Mol. Biol. 405, 773-786. https://doi.org/10.1016/j.jmb.2010.11.013
- Oates, M.E., Romero, P., Ishida, T., Ghalwash, M., Mizianty, M.J., Xue, B., Dosztanyi, Z., Uversky, V.N., Obradovic, Z., Kurgan, L., et al. (2013). D(2) P(2): database of disordered protein predictions. Nucleic Acids Res. 41, D508-D516. https://doi.org/10.1093/nar/gks1226
- Oldfield, C.J., Cheng, Y., Cortese, M.S., Romero, P., Uversky, V.N., and Dunker, A.K. (2005). Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44, 12454-12470. https://doi.org/10.1021/bi050736e
- Onuchic, J.N., Wolynes, P.G., Luthey-Schulten, Z., and Socci, N.D. (1995). Toward an outline of the topography of a realistic protein-folding funnel. Proc. Natl. Acad. Sci. U. S. A. 92, 3626-3630. https://doi.org/10.1073/pnas.92.8.3626
- Papoian, G.A. (2008). Proteins with weakly funneled energy landscapes challenge the classical structure-function paradigm. Proc. Natl. Acad. Sci. U. S. A. 105, 14237-14238. https://doi.org/10.1073/pnas.0807977105
- Pelka, P., Ablack, J.N., Fonseca, G.J., Yousef, A.F., and Mymryk, J.S. (2008). Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes. J. Virol. 82, 7252-7263. https://doi.org/10.1128/JVI.00104-08
- Perutz, M.F., Rossmann, M.G., Cullis, A.F., Muirhead, H., Will, G., and North, A.C. (1960). Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature 185, 416-422. https://doi.org/10.1038/185416a0
- Praefcke, G.J., Ford, M.G., Schmid, E.M., Olesen, L.E., Gallop, J.L., Peak-Chew, S.Y., Vallis, Y., Babu, M.M., Mills, I.G., and McMahon, H.T. (2004). Evolving nature of the AP2 alpha-appendage hub during clathrin-coated vesicle endocytosis. EMBO J. 23, 4371-4383. https://doi.org/10.1038/sj.emboj.7600445
- Radhakrishnan, I., Perez-Alvarado, G.C., Parker, D., Dyson, H.J., Montminy, M.R., and Wright, P.E. (1997). Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91, 741-752. https://doi.org/10.1016/S0092-8674(00)80463-8
- Radivojac, P., Iakoucheva, L.M., Oldfield, C.J., Obradovic, Z., Uversky, V.N., and Dunker, A.K. (2007). Intrinsic disorder and functional proteomics. Biophys. J. 92, 1439-1456. https://doi.org/10.1529/biophysj.106.094045
- Romero, P., Obradovic, Z., Kissinger, C.R., Villafranca, J.E., Garner, E., Guilliot, S., and Dunker, A.K. (1998). Thousands of proteins likely to have long disordered regions. Pac. Symp. Biocomput. 437-448.
- Spolar, R.S. and Record, M.T., Jr. (1994). Coupling of local folding to sitespecific binding of proteins to DNA. Science 263, 777-784. https://doi.org/10.1126/science.8303294
- Sugase, K., Dyson, H.J., and Wright, P.E. (2007). Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021-1025. https://doi.org/10.1038/nature05858
- Tompa, P. (2002). Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 527-533. https://doi.org/10.1016/S0968-0004(02)02169-2
- Tompa, P., Davey, N.E., Gibson, T.J., and Babu, M.M. (2014). A million peptide motifs for the molecular biologist. Mol. Cell 55, 161-169. https://doi.org/10.1016/j.molcel.2014.05.032
- Tompa, P. and Fuxreiter, M. (2008). Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem. Sci. 33, 2-8. https://doi.org/10.1016/j.tibs.2007.10.003
- Tsytlonok, M., Sanabria, H., Wang, Y., Felekyan, S., Hemmen, K., Phillips, A.H., Yun, M.K., Waddell, M.B., Park, C.G., Vaithiyalingam, S., et al. (2019). Dynamic anticipation by Cdk2/Cyclin A-bound p27 mediates signal integration in cell cycle regulation. Nat. Commun. 10, 1676. https://doi.org/10.1038/s41467-019-09446-w
- Tuttle, L.M., Pacheco, D., Warfield, L., Luo, J., Ranish, J., Hahn, S., and Klevit, R.E. (2018). Gcn4-mediator specificity is mediated by a large and dynamic fuzzy protein-protein complex. Cell Rep. 22, 3251-3264. https://doi.org/10.1016/j.celrep.2018.02.097
- Uversky, V.N. (2002). Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 11, 739-756. https://doi.org/10.1110/ps.4210102
- Uversky, V.N. (2018). Intrinsic disorder, protein-protein interactions, and disease. Adv. Protein Chem. Struct. Biol. 110, 85-121. https://doi.org/10.1016/bs.apcsb.2017.06.005
- Uversky, V.N., Gillespie, J.R., and Fink, A.L. (2000). Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins 41, 415-427. https://doi.org/10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7
- Uversky, V.N., Oldfield, C.J., and Dunker, A.K. (2008). Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys. 37, 215-246. https://doi.org/10.1146/annurev.biophys.37.032807.125924
- van der Lee, R., Buljan, M., Lang, B., Weatheritt, R.J., Daughdrill, G.W., Dunker, A.K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D.T., et al. (2014). Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589-6631. https://doi.org/10.1021/cr400525m
- Vavouri, T., Semple, J.I., Garcia-Verdugo, R., and Lehner, B. (2009). Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 138, 198-208. https://doi.org/10.1016/j.cell.2009.04.029
- Ward, J.J., Sodhi, J.S., McGuffin, L.J., Buxton, B.F., and Jones, D.T. (2004). Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337, 635-645. https://doi.org/10.1016/j.jmb.2004.02.002
- Warfield, L., Tuttle, L.M., Pacheco, D., Klevit, R.E., and Hahn, S. (2014). A sequence-specific transcription activator motif and powerful synthetic variants that bind Mediator using a fuzzy protein interface. Proc. Natl. Acad. Sci. U. S. A. 111, E3506-E3513. https://doi.org/10.1073/pnas.1412088111
- Weathers, E.A., Paulaitis, M.E., Woolf, T.B., and Hoh, J.H. (2004). Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein. FEBS Lett. 576, 348-352. https://doi.org/10.1016/j.febslet.2004.09.036
- Wei, G., Xi, W., Nussinov, R., and Ma, B. (2016). Protein ensembles: how does nature harness thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in the cell. Chem. Rev. 116, 6516-6551. https://doi.org/10.1021/acs.chemrev.5b00562
- Wootton, J.C. (1994). Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput. Chem. 18, 269-285. https://doi.org/10.1016/0097-8485(94)85023-2
- Wright, P.E. and Dyson, H.J. (1999). Intrinsically unstructured proteins: reassessing the protein structure-function paradigm. J. Mol. Biol. 293, 321-331. https://doi.org/10.1006/jmbi.1999.3110
- Wright, P.E. and Dyson, H.J. (2009). Linking folding and binding. Curr. Opin. Struct. Biol. 19, 31-38. https://doi.org/10.1016/j.sbi.2008.12.003
- Wright, P.E. and Dyson, H.J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18-29. https://doi.org/10.1038/nrm3920
- Wu, H. and Fuxreiter, M. (2016). The structure and dynamics of higher-order assemblies: amyloids, signalosomes, and granules. Cell 165, 1055-1066. https://doi.org/10.1016/j.cell.2016.05.004
- Xie, H., Vucetic, S., Iakoucheva, L.M., Oldfield, C.J., Dunker, A.K., Uversky, V.N., and Obradovic, Z. (2007). Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 6, 1882-1898. https://doi.org/10.1021/pr060392u
- Xue, B., Romero, P.R., Noutsou, M., Maurice, M.M., Rudiger, S.G., William, A.M., Jr., Mizianty, M.J., Kurgan, L., Uversky, V.N., and Dunker, A.K. (2013). Stochastic machines as a colocalization mechanism for scaffold protein function. FEBS Lett. 587, 1587-1591. https://doi.org/10.1016/j.febslet.2013.04.006
- Zhang, Y., Qiu, W.J., Liu, D.X., Neo, S.Y., He, X., and Lin, S.C. (2001). Differential molecular assemblies underlie the dual function of Axin in modulating the WNT and JNK pathways. J. Biol. Chem. 276, 32152-32159. https://doi.org/10.1074/jbc.M104451200
- Zhou, H.X. (2012). Intrinsic disorder: signaling via highly specific but short-lived association. Trends Biochem. Sci. 37, 43-48. https://doi.org/10.1016/j.tibs.2011.11.002
Cited by
- Integrative Multi-Omics Approaches in Cancer Research: From Biological Networks to Clinical Subtypes vol.44, pp.7, 2020, https://doi.org/10.14348/molcells.2021.0042
- Thermodynamic Models for Assembly of Intrinsically Disordered Protein Hubs with Multiple Interaction Partners vol.143, pp.32, 2020, https://doi.org/10.1021/jacs.1c00811