DOI QR코드

DOI QR Code

전도성 재료를 포함한 시멘트 그라우트의 역학적 특성

Mechanical Properties of Cement Grout Including Conductive Materials

  • Choi, Hyojun (Department of Civil & Environmental Engineering, Dankook University) ;
  • Cho, Wanjei (Department of Civil & Environmental Engineering, Dankook University) ;
  • Hwang, Bumsik (Department of Civil & Environmental Engineering, Dankook University) ;
  • Yune, Chanyoung (Department of Civil Engineering, Gangneung Wonju National University)
  • 투고 : 2020.11.02
  • 심사 : 2020.11.19
  • 발행 : 2020.12.01

초록

도심지의 건축구조물 밀집 및 아파트 재건축 등으로 인하여 지하공간 개발이 다양하게 이루어지고 있으나, 차수 및 지반보강작업에 있어 부등침하와 같은 다양한 문제들이 발생하고 있다. 지반 보강에 있어 빈번히 사용되고 있는 그라우팅 공법에서는 시공단계에서 투입된 그라우트 재의 주입량 측정 또는 지반 보링 후 일축압축강도시험을 통해 품질관리를 수행하고 있으나, 시공단계에서 지반 보강이 제대로 이루어졌는지는 판단하기 어려운 실정이다. 이러한 문제를 해결하기 위해 전도성 재료가 혼합된 그라우트 재를 사용하여 그라우팅을 수행한 후 전기비저항 측정을 통해 품질관리를 수행하기 위한 연구가 필요한 실정이다. 본 연구는 이에 대한 기초연구로 전도성 재료인 탄소섬유가 혼합된 그라우트 재의 성능을 평가하기 위해 탄소섬유가 0%, 3%, 5%, 7%로 혼합된 시멘트 공시체를 제작하였으며. 제작한 공시체에 대하여 7일, 14일, 28일 수중양생 시킨 후 1%/min의 변형속도로 일축압축시험을 수행하였다. 일축압축시험 결과 탄소섬유의 배합비 증가에 따라 일축압축강도가 증가하는 경향을 보였으며, 혼합된 탄소섬유가 그라우트재의 조기강도 발현에 영향을 미치는 것을 확인하였다.

Recently, underground spaces have been developed variously due to the concentration of the building structure in downtown area and reconstruction of the apartment. However, various problems such as differential settlement are occurring in the waterproof and reinforcement construction. In grouting method, which is frequently used for the ground reinforcement, quality control was performed by measuring the injection quantity of grouting materials and performing laboratory tests using boring samples, but it is difficult to determine whether the ground reinforcement has been performed properly during the construction stage. In order to solve this problem, a research is needed to carry out quality control by measuring electric resistivity after grouting is performed using grouting materials mixed with conductive materials. In this research, as a basic study of the new grouting method using conductive materials, uniaxial compression tests were performed using cement specimen with 0, 3, 5, 7% of carbon fiber to evaluate the effect of conductive material on the performance of grouting material. Based on the test results, the uniaxial compressive strength is increased with the mixed proportion of the carbon fiber increase. Furthermore, the carbon fiber can also affect on the early-strength of the grouting materials.

키워드

참고문헌

  1. Ahn, H. J., Kim, S. H. and Choi, S. K. (2016), An experimental study on electric resistivity and exothermic property of electrically conductive mortar using amorphous graphite, Journal of the Korea Institute of Building Construction, Vol. 16, No. 3, pp. 247-255. https://doi.org/10.5345/JKIBC.2016.16.3.247
  2. Cao, J. and Chung, D.D.L. (2001), Carbon fiber reinforced cement mortar improved by using acrylic dispersion as an admixture, Cement and Concrete Research, Vol. 31, Issue 11, pp. 1633-1637. https://doi.org/10.1016/S0008-8846(01)00599-3
  3. Chen, B. and Liu, J. (2003), Effect of fibers on expansion of concrete with a large amount of high f-CaO fly ash, Cement and Concrete Research, Vol. 33, Issue 10, pp. 1549-1552. https://doi.org/10.1016/S0008-8846(03)00098-X
  4. Graham, R. K., Huang, B., Shu, X. and Burdette, E.G. (2013), Laboratory evaluation of tensile strength and energy absorbing properties of cement mortar reinforced with micro- and mesosized carbon fibers, Construction and Building Materials, Vol. 44, pp. 751-756. https://doi.org/10.1016/j.conbuildmat.2013.03.071
  5. Heo, W. (2010), Practical Application For Eco-Grouting Materials, Master's Thesis of Dankook University, pp. 15-18.
  6. Kim, C. J. and Sun, J. Y. (2018), A study on the strength properties of grout containing blast-furnace slag and carbon fiber, Journal of Advanced Engineering and Technology, Vol. 11, No. 1, pp. 69-76.
  7. Kim, H. C. (2017), A Study on the development of a grouting material containing blast furnace slag and carbon fiber, Doctoral Dissertation of Chosun University, pp. 53-96.
  8. Kong, J. Y., Kim, C. K., Park, J. H. and Chun, B. S. (2010), Grouting effects of microfine cement in the rock-based sites, Journal of the Korean Geosynthetics Society, Vol. 11, No. 12, pp. 37-45.
  9. Peyvandi, A., Soroushian, P., Balachandra, A. M. and Sobolev, K. (2013), Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets, Construction and Building Materials, Vol. 47, pp. 111-117. https://doi.org/10.1016/j.conbuildmat.2013.05.002
  10. Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A. and Richard, G. (2005), Electrical resistivity survey in soil science: a review, Soil and Tillage Research, Vol. 83, Issue 2, pp. 173-193. https://doi.org/10.1016/j.still.2004.10.004
  11. Sassani, A., Arabzadeh, A., Halil, C., Kim, S. H., Sadati, S. S. M., Gopalakrishnan, K., Taylor, P. C. and Abdualla, H. (2018), Carbon fiber-based electrically conductive concrete for salt-free deicing of pavement, Journal of Cleaner Production, Vol. 203, pp. 799-809. https://doi.org/10.1016/j.jclepro.2018.08.315
  12. Seo, H. and Kim, D. H. (2019), Development of reinforcement grout materials using reinforcing fiber and blast furnace slag powder, Journal of the Korean Geosynthetics Society, Vol. 18, No. 3, pp. 101-112. https://doi.org/10.12814/JKGSS.2019.18.3.101
  13. Shu, X., Graham, R. K., Huang, B. and Burdette, E. G. (2015), Hybrid effects of carbon fibers on mechanical properties of Portland cement mortar, Materials & Design, Vol. 65, pp. 1222-1228. https://doi.org/10.1016/j.matdes.2014.10.015
  14. Wang, S., Wen, S. and Chung, D.D.L. (2004), Resistance heating using electrically conductive cement, Advances in Cement Research, Vol. 16, Issue 4, pp. 161-166. https://doi.org/10.1680/adcr.16.4.161.46662
  15. Wu, J., Liu, J. and Yang, F. (2014), Study on three-phase composite conductive concrete for pavement deicing, Construction and Building Materials, Vol. 75, pp. 129-135. https://doi.org/10.1016/j.conbuildmat.2014.11.004