References
- Mylonakis E, Aballay A. 2005. Worms and flies as genetically tractable animal models to study host-pathogen interactions. Infect. Immun. 73: 3833-3841. https://doi.org/10.1128/IAI.73.7.3833-3841.2005
- Irazoqui JE, Urbach JM, Ausubel FM. 2010. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat. Rev. Immunol. 10: 47-58. https://doi.org/10.1038/nri2689
- Aballay A, Ausubel FM. 2002. Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr. Opin. Microbiol. 5: 97-101. https://doi.org/10.1016/S1369-5274(02)00293-X
- Wu Q, Cao X, Yan D, Wang D, Aballay A. 2015. Genetic screen reveals link between the maternal effect sterile gene Mes-1 and Pseudomonas aeruginosa-induced neurodegeneration in Caenorhabditis elegans. J. Biol. Chem. 290: 29231-29239. https://doi.org/10.1074/jbc.M115.674259
- Yu Y, Zhi L, Wu Q, Jing L, Wang D. 2018. NPR-9 regulates the innate immune response in Caenorhabditis elegans by antagonizing the activity of AIB interneurons. Cell Mol. Immunol. 15: 27-37. https://doi.org/10.1038/cmi.2016.8
- Zhi L, Yu Y, Li X, Wang D, Wang D. 2017. Molecular control of innate immune response to Pseudomonas aeruginosa infection by intestinal Let-7 in Caenorhabditis elegans. PLoS Pathog. 13: e1006152. https://doi.org/10.1371/journal.ppat.1006152
- Sun L, Liao K, Hang C, Wang D. 2017. Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS One. 12: e172228.
- Pantel A, Dunyach-Remy C, Ngba EC, Mesureur J, Sotto A, Pages JM, et al. 2016. Modulation of membrane influx and efflux in Escherichia coli sequence type 131 has an impact on bacterial motility, biofilm formation, and virulence in a Caenorhabditis elegans model. Antimicrob. Agents Chemother. 60: 2901-2911. https://doi.org/10.1128/AAC.02872-15
- Kurz CL, Ewbank JJ. 2003. Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat. Rev. Genet. 4: 380-390. https://doi.org/10.1038/nrg1067
- Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E. 2009. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryot. Cell. 8: 1750-1758. https://doi.org/10.1128/EC.00163-09
- Mylonakis E, Casadevall A, Ausubel FM. 2007. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog. 3: e101. https://doi.org/10.1371/journal.ppat.0030101
- Gow NA, Brown AJ, Odds FC. 2002. Fungal morphogenesis and host invasion. Curr. Opin. Microbiol. 5: 366-371. https://doi.org/10.1016/S1369-5274(02)00338-7
- Sun LM, Liao K, Liang S, Yu PH, Wang DY. 2015. Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans. J. Appl. Microbiol. 118: 826-838. https://doi.org/10.1111/jam.12737
- Sun LM, Ye XL, Ding DF, Liao K. 2019. Opposite effects of vitamin C and vitamin E on the antifungal activity of honokiol. J. Microbiol. Biotechnol. 16: 2325-2335.
- Berman J, Sudbery PE. 2002. Candida albicans: a molecular revolution built on lessons from budding yeast. Nat. Rev. Genet. 3: 918-930. https://doi.org/10.1038/nrg948
- Mayer FL, Wilson D, Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence 4: 119-128. https://doi.org/10.4161/viru.22913
- Pukkila-Worley R, Mylonakis E. 2010. From the outside in and the inside out: antifungal immune responses in Caenorhabditis elegans. Virulence 1: 111-112. https://doi.org/10.4161/viru.1.3.11746
- Pukkila-Worley R, Ausubel FM, Mylonakis E. 2011. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses. PLoS Pathog. 7: e1002074. https://doi.org/10.1371/journal.ppat.1002074
- Shakoor S, Sun L, Wang D. 2016. Multi-walled carbon nanotubes enhanced fungal colonization and suppressed innate immune response to fungal infection in nematodes. Toxicol. Res. (Camb). 5: 492-499. https://doi.org/10.1039/C5TX00373C
- Sun LM, Zhi LT, Shakoor S, Liao K, Wang DY. 2016. MicroRNAs involved in the control of innate immunity in Candida infected Caenorhabditis elegans. Sci. Rep. 6: 36036 . https://doi.org/10.1038/srep36036
- Wang Z, Potter CS, Sundberg JP, Hogenesch H. 2012. SHARPIN is a key regulator of immune and inflammatory responses. J. Cell Mol. Med. 16: 2271-2279. https://doi.org/10.1111/j.1582-4934.2012.01574.x
- Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM. 2011. Postsynaptic prosap/shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol. 21: 594-603. https://doi.org/10.1016/j.tcb.2011.07.003
- Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, et al. 1999. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23: 569-582. https://doi.org/10.1016/S0896-6273(00)80809-0
- Ganor Y, Besser M, Ben-Zakay N, Unger T, Levite M. 2003. Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J. Immunol. 170: 4362-4372. https://doi.org/10.4049/jimmunol.170.8.4362
- Jee C, Lee J, Lee JI, Lee WH, Park BJ, Yu JR, et al. 2004 . SHN-1, a shank homologue in C. elegans, affects defecation rhythm via the inositol-1,4,5-trisphosphate receptor. FEBS Lett. 561: 29-36. https://doi.org/10.1016/S0014-5793(04)00107-3
- Brenner S. 1974. The genetics of Caenorhabditis elegans. Genetics 77: 71-94. https://doi.org/10.1093/genetics/77.1.71
- Wang D, Cao M, Dinh J, Dong Y. 2013. Methods for creating mutations in C. elegans that extend lifespan. Methods Mol. Biol. 1048: 65-75. https://doi.org/10.1007/978-1-62703-556-9_6
- Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, Mylonakis E. 2007. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog. 3: e18. https://doi.org/10.1371/journal.ppat.0030018
- Mello C, Fire A. 1995. DNA transformation. Methods Cell Biol. 48: 451-482. https://doi.org/10.1016/S0091-679X(08)61399-0
- Jiang YH, Ehlers MD. 2013. Modeling autism by shank gene mutations in mice. Neuron 78: 8-27. https://doi.org/10.1016/j.neuron.2013.03.016
- Lee RY, Lobel L, Hengartner M, Horvitz HR, Avery L. 1997. Mutations in the alpha1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J. 16: 6066-6076. https://doi.org/10.1093/emboj/16.20.6066
- Maricq AV, Peckol E, Driscoll M, Bargmann CI. 1995. Mechanosensory signalling in C. elegans mediated by the glr-1 glutamate receptor. Nature 378: 78-81. https://doi.org/10.1038/378078a0
- Reece-Hoyes JS, Shingles J, Dupuy D, Grove CA, Walhout AJ, Vidal M, et al. 2007. Insight into transcription factor gene duplication from Caenorhabditis elegans promoterome-driven expression patterns. BMC Genomics 8: 27. https://doi.org/10.1186/1471-2164-8-27
- Kass J, Jacob TC, Kim P, Kaplan JM. 2001. The EGL-3 proprotein convertase regulates mechanosensory responses of Caenorhabditis elegans. J. Neurosci. 21: 9265-9272. https://doi.org/10.1523/jneurosci.21-23-09265.2001
- Wacker I, Schwarz V, Hedgecock EM, Hutter H. 2003. Zag-1, a Zn-finger homeodomain transcription factor controlling neuronal differentiation and axon outgrowth in C. elegans. Development 130: 3795-3805. https://doi.org/10.1242/dev.00570
- Zhong W, Sternberg PW. 2006. Genome-wide prediction of C. elegans genetic interactions. Science 311: 1481-1484. https://doi.org/10.1126/science.1123287
- Kullyev A, Dempsey CM, Miller S, Kuan CJ, Hapiak VM, Komuniecki RW, et al. 2010. A genetic survey of fluoxetine action on synaptic transmission in Caenorhabditis elegans. Genetics 186: 929-941. https://doi.org/10.1534/genetics.110.118877
- Kowalski JR, Dahlberg CL, Juo P. 2011. The deubiquitinating enzyme USP-46 negatively regulates the degradation of glutamate receptors to control their abundance in the ventral nerve cord of Caenorhabditis elegans. J. Neurosci. 31: 1341-1354. https://doi.org/10.1523/JNEUROSCI.4765-10.2011
- Allen AT, Maher KN, Wani KA, Betts KE, Chase DL. 2011. Coexpressed D1- and D2-like dopamine receptors antagonistically modulate acetylcholine release in Caenorhabditis elegans. Genetics 188: 579-590. https://doi.org/10.1534/genetics.111.128512
- Nass R, Hahn MK, Jessen T, McDonald PW, Carvelli L, Blakely RD. 2005. A genetic screen in Caenorhabditis elegans for dopamine neuron insensitivity to 6-hydroxydopamine identifies dopamine transporter mutants impacting transporter biosynthesis and trafficking. J. Neurochem. 94: 774-785. https://doi.org/10.1111/j.1471-4159.2005.03205.x
- Oh WC, Song HO, Cho JH, Park BJ. 2011. ANK repeat-domain of SHN-1 is indispensable for in vivo SHN-1 function in C. elegans. Mol. Cells. 31: 79-84. https://doi.org/10.1007/s10059-011-0007-9
- Huang G, Chen S, Chen X, Zheng J, Xu Z, Doostparast TA, et al. 2019. Uncovering the functional link between SHANK3 deletions and deficiency in neurodevelopment using iPSC-derived human neurons. Front. Neuroanat. 13: 23. https://doi.org/10.3389/fnana.2019.00023
- Yoo YE, Yoo T, Lee S, Lee J, Kim D, Han HM, et al. 2019. Shank3 mice carrying the human Q321R mutation display enhanced selfgrooming, bbnormal electroencephalogram patterns, and suppressed neuronal excitability and seizure susceptibility. Front Mol. Neurosci. 12: 155. https://doi.org/10.3389/fnmol.2019.00155
- Katz M, Corson F, Keil W, Singhal A, Bae A, Lu Y, et al. 2019. Glutamate spillover in C. elegans triggers repetitive behavior through presynaptic activation of MGL-2/mGluR5. Nat. Commun. 10: 1882. https://doi.org/10.1038/s41467-019-09581-4
- Alvarez J, Alvarez-Illera P, Garcia-Casas P, Fonteriz RI, Montero M. 2020. The role of Ca2+ signaling in aging and neurodegeneration: insights from Caenorhabditis elegans models. Cells 9: 204. https://doi.org/10.3390/cells9010204
- Sellegounder D, Yuan CH, Wibisono P, Liu Y, Sun J. 2018. Octopaminergic signaling mediates neural regulation of innate immunity in Caenorhabditis elegans. mBio. 9: e01645-18.
- Koutsilieri E, Riederer P, du Plessis S, Scheller C. 2014. A short review on the relation between the dopamine transporter 10/10- repeat allele and ADHD: implications for HIV infection. ADHD Atten. Def. Hyp. Disord. 6: 203-209. https://doi.org/10.1007/s12402-014-0134-1
- Quintero-Villegas A, Valdes-Ferrer SI. 2019. Role of 5-HT7 receptors in the immune system in health and disease. Mol. Med. 26: 2. https://doi.org/10.1186/s10020-019-0126-x
- Wan M, Ding L, Wang D, Han J, Gao P. 2020. Serotonin: a potent immune cell modulator in autoimmune diseases. Front. Immunol. 11: 186. https://doi.org/10.3389/fimmu.2020.00186